

Office Use Only

of service under section 352 of the Act)

Application Number:

Private Bag 752, Memorial Ave	
Kaikohe 0440, New Zealand	
Freephone: 0800 920 029	
Phone: (09) 401 5200	
Fax: (09) 401 2137	
Email: ask.us@fndc.govt.nz	
Website: www.fndc.govt.nz	

APPLICATION FOR RESOURCE CONSENT OR FAST-TRACK RESOURCE CONSENT

(Or Associated Consent Pursuant to the Resource Management Act 1991 (RMA)) (If applying for a Resource Consent pursuant to Section 87AAC or 88 of the RMA, this form can be used to satisfy the requirements of Form 9)

Prior to, and during, completion of this application form, please refer to Resource Consent Guidance Notes and Schedule of Fees and Charges – both available on the Council's web page.

1. Pre-Lodgement Meeting

Have you met with a Council Resource Consent representative to discuss this application prior to lodgement? Yes / No

2. Type of Consent being applied for (more than one circle can be ticked):

O Land Use	${\sf O}$ Fast Track Land Us	e* O Subdivisi	ion O Discharge
O Extension of time	e (s.125) O Change of conditior	s (s.127) O Change	of Consent Notice (s.221(3))
O Consent under N	ational Environmental Standard (e.	g. Assessing and Manac	ging Contaminants in Soil)
O Other (please spe *The fast track for simple electronic address for serv	ecify) land use consents is restricted to consei rice.	nts with a controlled activity s	status and requires you provide an
3. Would you li	ike to opt out of the Fast Track Pro	cess?	Yes / No
4. Applicant De Name/s:	<mark>etails:</mark> Taheke Marae		
Electronic Address for Service (E-mail):			
Phone Numbers:			
Postal Address: (or alternative method of service under section 352 of the Act)		·	
		Post	Code:
5. Address for details here).	Correspondence: Name and addres	s for service and correspon	dence (if using an Agent write the
Name/s:	Steven Sanson - Sanson & As	sociates Limited	
Electronic Address for Service (E-mail):	steve@sansons.co.nz		
Phone Numbers:	Work: 0211606035	Home:	
Postal Address: (or alternative method	PO Box 318, Paihia, 0247		

Post Code:

All correspondence will be sent by email in the first instance. Please advise us if you would prefer an alternative means of communication.

Details of Property Owner/s and Occupier/s: Name and Address of the Owner/Occupiers of the land to which 6.

this application	on relates (where there are multiple owners or occupiers please list on a separate sheet if required)		
Name/s:	Refer Record of Titles appended to the AEE		
Property Address/: Location	3182 State Highway 12, Taheke RD3 Kaikohe		
7. Application Location and/or Prop	Site Details: erty Street Address of the proposed activity:		
Site Address/ Location:	3182 State Highway 12, Taheke RD3 Kaikohe		
Legal Description: Certificate of Title:	Taheke B Block ML Plan 441020 Val Number: 614381 Please remember to attach a copy of your Certificate of Title to the application, along with relevant consent notices and/or easements and encumbrances (search copy must be less than 6 months old)		
Site Visit Requirement Is there a locked gate Is there a dog on the Please provide details caretaker's details. The Please cal	tts: or security system restricting access by Council staff? Yes / No property? Yes / No s of any other entry restrictions that Council staff should be aware of, e.g. health and safety, his is important to avoid a wasted trip and having to re-arrange a second visit. I application - Eddie Morunga prior to a site visit		
8. Description Please enter a a recognized s Notes, for furth FNDC Rese	of the Proposal: brief description of the proposal here. Attach a detailed description of the proposed activity and drawings (to cale, e.g. 1:100) to illustrate your proposal. Please refer to Chapter 4 of the District Plan, and Guidance her details of information requirements. Durce Consent for upgrades and additions to the Taheke Marae.		

If this is an application for an Extension of Time (s.125); Change of Consent Conditions (s.127) or Change or Cancellation of Consent Notice conditions (s.221(3)), please quote relevant existing Resource Consents and Consent Notice identifiers and provide details of the change(s) or extension being sought, with reasons for requesting them.

10.	Other Consent required/being applied for under different legislation (more than one circle can b	e
	ticked):	

O Building Consent (BC ref # if known)

O Regional Council Consent (ref # if known)

O National Environmental Standard consent

O Other (please specify)

11. National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health:

The site and proposal may be subject to the above NES. In order to determine whether regard needs to be had to the NES please answer the following (further information in regard to this NES is available on the Council's planning web pages):

Is the piece of land currently being used or has it historically ever been used for an activity or industry on the Hazardous Industries and Activities List (HAIL)

Is the proposed activity an activity covered by the NES? (If the activity is any of the activities listed below, then you need to tick the 'yes' circle).

O ves O no O don't know

O yes O no O don't know

O Subdividing land

O Disturbing, removing or sampling soil

O Changing the use of a piece of land

O Removing or replacing a fuel storage system

12. Assessment of Environmental Effects:

Every application for resource consent must be accompanied by an Assessment of Environmental Effects (AEE). This is a requirement of Schedule 4 of the Resource Management Act 1991 and an application can be rejected if an adequate AEE is not provided. The information in an AEE must be specified in sufficient detail to satisfy the purpose for which it is required. Your AEE may include additional information such as Written Approvals from adjoining property owners, or affected parties.

Please attach your AEE to this application.

13. Billing Details:

This identifies the person or entity that will be responsible for paying any invoices or receiving any refunds associated with processing this resource consent. Please also refer to Council's Fees and Charges Schedule.

Name/s: (please write all names in full)	e			
Email:				
Postal Address:				
			Post Code:	
Phone Numbers:	Work:	Home:	Fax:	

Fees Information. An instalment fee for processing this application is payable at the time of lodgement and must accompany your application in order for it to be lodged. Please note that if the instalment fee is insufficient to cover the actual and reasonable costs of work undertaken to process the application you will be required to pay any additional costs. Invoiced amounts are payable by the 20^o of the month following invoice date. You may also be required to make additional payments if your application requires notification.

Declaration concerning Payment of Fees: two understand that the Council may charge melus for all costs actually and reasonably incurred in processing this application. Subject to mylour rights under Sections 357B and 358 of the RMA, to object to any costs, live undertake to pay all and future processing costs incurred by the Council. Without limiting the Far North District Council's legal rights if any steps (including the use of debt collection agencies) are necessary to recover unpaid processing costs live agree to pay all costs of recovering those processing costs if this application is made on behalf of a trust (private or family), a society (incorporated or unincorporated) or a company in signing this application live are binding the trust, society or company to pay all the above costs and guaranteeing to pay all the above costs in mylour personal capacity.

Name:_	(please print)			
Signatu	(signature of bill payer - manda	tory) Date:	29/10/23	

14. Important Information:

Note to applicant

You must include all information required by this form. The information must be specified in sufficient detail to satisfy the purpose for which it is required.

You may apply for 2 or more resource consents that are needed for the same activity on the same form. You must pay the charge payable to the consent authority for the resource consent application under the Resource Management Act 1991.

Fast-track application

Under the fast-track resource consent process, notice of the decision must be given within 10 working days after the date the application was first lodged with the authority, unless the applicant opts out of that process at the time of lodgement. A fast-track application may cease to be a fast-track application under section 87AAC(2) of the RMA.

Privacy Information:

Once this application is lodged with the Council it becomes public information. Please advise Council if there is sensitive information in the proposal. The information you have provided on this form is required so that your application for consent pursuant to the Resource Management Act 1991 can be processed under that Act. The information will be stored on a public register and held by the Far North District Council. The details of your application may also be made available to the public on the Council's website, <u>www.fndc.govt.nz</u>. These details are collected to inform the general public and community groups about all consents which have been issued through the Far North District Council.

Declaration: The information I have supplied with this application is true and complete to the best of my knowledge.

Name: _____(please print)

Signature: (signature)

(A signature is not required if the application is made by electronic means)

Checklist (please tick if information is provided)

- Payment (cheques payable to Far North District Council)
- A current Certificate of Title (Search Copy not more than 6 months old)
- O Copies of any listed encumbrances, easements and/or consent notices relevant to the application
- O Applicant / Agent / Property Owner / Bill Payer details provided
- Location of property and description of proposal
- Assessment of Environmental Effects
- Written Approvals / correspondence from consulted parties
- Reports from technical experts (if required)
- O Copies of other relevant consents associated with this application
- Location and Site plans (land use) AND/OR
- Location and Scheme Plan (subdivision)
- O Elevations / Floor plans
- Topographical / contour plans

Please refer to Chapter 4 of the District Plan for details of the information that must be provided with an application. Please also refer to the RC Checklist available on the Council's website. This contains more helpful hints as to what information needs to be shown on plans.

Only one copy of an application is required, but please note for copying and scanning purposes, documentation should be:

UNBOUND

SINGLE SIDED

NO LARGER THAN A3 in SIZE

Date:

SANSON & ASSOCIATES LTD

Planners & Resource Consent Specialists

Assessment of Environmental Effects

Application for Resource Consent:

Taheke Marae Ablution Block, Wastewater System Replacement, & Mattress Room Development

Prepared for: Taheke Marae Trustees Prepared by Steven Sanson | Consultant Planner October 2023

1.0 APPLICANT & PROPERTY DETAILS

Applicant	Taheke Marae Trustees
Address for Service	Sanson & Associates Limited PO Box 318 PAIHIA 0247 C/O - Steven Sanson steve@sansons.co.nz
Legal Description	Taheke B Block Maori Land Plan 441020
Record Of Title	614381
Physical Address	3182 State Highway 12, Taheke, Kaikohe
Site Area	5,047m2
Owner of the Site	Various – Refer CT in <u>Appendix 1</u> .
District Plan Zone	Rural Production (ODP) Maori Purpose Zone – Rural (PDP)
District Plan Features	Nil
Archaeology	Nil known
NRC Overlays	Nil
Soils	6e7
Protected Natural Area	Nil
HAIL	No

Schedule 1

2.0 SUMMARY OF PROPOSAL

Proposal	The proposal seeks alterations and additions to Taheke Marae through the addition of a new mattress storage room, new ablution block, new verandah and canopy and removal of concrete water tanks.
Reason for Application	 The proposal breaches: 8.6.5.1.3 – Stormwater Management; 8.6.5.1.4 – Setback from Boundaries; 8.6.5.1.10 Building Coverage. Overall, the proposal is a <u>Discretionary Activity</u> under the ODP. No consents are required under the PDP.
Appendices	Appendix 1 – Record of Title & Instruments Appendix 2 – Architectural Drawings [Arcline] Appendix 3 – Topographical Survey Appendix 4 – Geotechnical Report [Geologix] Appendix 5 – Wastewater Report [Water Flow] Appendix 6 – Northland Regional Council Consent Application. Appendix 7 – Consultation with NZTA Appendix 8 – Stormwater Report [Geologix]
Consultation	Nil
Pre Application Consultation	Nil
Relevant Applications	Nil

3.0 INTRODUCTION & PROPOSAL

3.1 Report Requirements

This report has been prepared for Taheke Marae in support of a land use consent application at 3182 State Highway 12, Taheke.

The application has been prepared in accordance with the provisions of Section 88 and the Fourth Schedule of the Resource Management Act 1991. This report serves as the Assessment of Environmental Effects required under both provisions.

The report also includes an analysis of the relevant provisions of the Far North District Plan, relevant National Policy Statements and Environmental Standards, as well as Part 2 of the Resource Management Act 1991.

3.2 Proposal

<u>Application Site:</u> A range of details regarding the site are outlined in <u>Schedule 1</u> of this report. These details are supplemented by the Record of Title and relevant instruments located in <u>Appendix 1</u>. A broader description of the site is provided for in Section 4 of this Report.

Land Use Consent: The proposal seeks alterations and additions to Taheke Marae through the addition of a new mattress storage room, new ablution block, new verandah and canopy, and removal of concrete water tanks.

These proposal items are shown on the architectural drawings provided in <u>Appendix</u> <u>2</u>.

Activity Status: The proposal is a Discretionary Activity.

4.0 SITE & SURROUNDING ENVIRONMENT

4.1 Zoning & Resource Features

The proposed activity is located in the Rural Production & Lakes & Rivers Zone under the Operative District Plan. The site is located in the Maori Purpose Zone – Rural under the Proposed District Plan. The zoning is outlined in <u>Figure 1</u>. There are no resource features of relevance.

Figure 1 - Zone Maps (Source: Far North Maps)

The site is not implicated by flooding hazards, HAIL, or any known wetlands.

Figure 2 - NRC Maps (Source: NRC Local Maps)

4.2 Record of Title

The site is Maori Freehold Land and has a specific purpose as a Marae Reservation. There is one instrument on the title which relates to an easement granted across the neighbouring site to provide for car parking for the marae activity. This is provided in <u>Appendix 1</u>.

4.4 Topography & Natural Features

The topographic survey found in <u>Appendix 3</u> details the contours of the site. The site outside of built development is grassed pasture and to the west includes a small bush area. This is outlined in <u>Figure 3</u> below. Geological features of the site are detailed in the Geotechnical Report found in <u>Appendix 4</u>.

Figure 3 – Aerial Map (Source: NRC Local Maps)

4.5 Built Form & Access

The Topo Survey outlines the built development on the site, this includes the Wharehui, Wharekai, Kitchen, Ablution Blocks, Water, and Septic Tanks. A small shed and various concrete footpaths / paved areas also service the site.

The site gains access from SH 12, via two crossings. The first is from Taheke 12B ML 441020 and the second is via the site to the west of the septic tanks.

4.6 Surrounding Environment

The site is predominantly rural in nature. There are dispersed residential units located in the surrounds. The Taheke River is the predominant natural feature of the surrounds. Otherwise, the surrounds are largely in vegetation / pasture.

5.0 ASSESSMENT OF RELEVANT RULES

5.1 Assessment Summary

An assessment of the relevant rules of the Far North District Plan has been undertaken and this is provided in <u>Table 1-3</u> below.

Rural Production Zone Standards			
Rule	Standards	Performance/Comments	
Residential	Permitted – One unit per 12ha of land	No residential units are proposed.	
Intensity	Restricted Discretionary - One unit per		
	4ha of land	Complies	
	Discretionary – One unit per 2ha of land		
	In all cases the land shall be		
	developed in such a way that		
	each unit shall have at least		
	2,000m² for its exclusive use		
	minimum of 1 Sha alcowhore		
	on the property		
Sunlight	Permitted - No part of any building shall	The proposal does not breach sunlight	
C on mgr re	project beyond a 45 degree recession	rules.	
	plane as measured inwards		
	from any point 2m vertically above	Complies	
	ground level on any site boundary		
	Restricted Discretionary – if permitted		
	standard breached		
Stormwater	Permitted - The maximum proportion of	Total impervious surfaces for the site	
Management	the gross site area covered by buildings	are 1,286.8m² (25.5%).	
	and other impermeable		
	Surfaces shall be 15%.	Discretioner (Activity)	
	of the gross site area covered by	Discretionary Activity	
	buildings and other impermeable		
	surfaces shall be 20%		
Setback	Permitted - No building shall be erected	The proposed mattress room is located	
from	within 10m of any site boundary;	within the 10m setback from SH12.	
Boundaries	Restricted Discretionary – if permitted		
	standard breached	Restricted Discretionary Activity	
Keeping of		N/A.	
Animals			
		Complies	
Noise		Not relevant	

Table 1 - Rural Production Zone Rules

-		Osmaliae
		Complies
Building	Permitted - The maximum height of any	The proposal elements are all less than
Height	building shall be 12m.	12m in height.
0	Restricted Discretionary - The maximum	ů,
	height of any building shall be 15m	Complies
Helicopter		N/A.
Landing		
Area		Complies
Building	Permitted - Any new building or	Total building coverage for the site is
Coverage	alteration/addition to an existing	920.8m ² (18.2%).
0	building is a permitted activity if the total	
	Building Coverage of a site does not	Discretionary Activity
	exceed 12.5% of the gross site area	<u></u>
	Controlled - Any new building or	
	alteration (addition to an ovicting	
	alleration/addition to an existing	
	building is a controlled activity if the	
	total Building Coverage of a site does	
	not exceed 15% of the gross site area.	
Scale of		Marae are exempt from the
Activities		requirements of this rule.
		Complies
Temporary		N/A
Events		
		Complies

Table 2 - District Wide Standards

District Wide Standards		
Rule	Standard	Performance/Comments
Natural and Phy	ysical Resources	
12.1 Landscape & Natural Features	12.1.6.1.1 Protection of Outstanding Landscape Features 12.1.6.1.2 Indigenous Vegetation Clearance in Outstanding landscapes 12.1.6.1.3 Tree Planting in Outstanding Landscapes 12.1.6.1.4 Excavation and/or filling within an outstanding landscape 12.1.6.1.5 Buildings within outstanding landscapes 12.1.6.1.6 Utility Services in Outstanding Landscapes	N/A – None of these features apply to the site.

District Wide Standards			
Rule	Standard	Performance/Comments	
12.2 Indigenous Flora and Fauna	12.2.6.1.1 Indigenous Vegetation Clearance Permitted Throughout the District 12.2.6.1.2 Indigenous Vegetation Clearance in the rural Production and Minerals Zones 12.2.6.1.3 Indigenous Vegetation Clearance in the General Coastal Zone 12.2.6.1.4 Indigenous Vegetation Clearance in Other Zones	N\A – No vegetation clearance is required.	
12.3 Earthworks	 12.3.6.1.1 Excavation and/or filling, excluding mining and quarrying, in the Rural Production Zone or Kauri Cliffs Zone Permitted – Maximum of 5,000m3 within a 12-month period and cannot be higher than 1.5m cut or fill. 	Total earthworks associated with the proposal will be less than the permitted maximum. No retaining walls are required. Complies	
12.4 Natural Hazards	12.4.6.1.1 Coastal Hazard 2 Area 12.4.6.1.2 Fire Risk to Residential Units	There are no residential units proposed. Complies	
12.5 Heritage	 12.5.6.1.1 Notable Trees 12.5.6.1.2 Alterations to/and maintenance of historic sites, buildings and objects 12.5.6.1.3 Registered Archaeological Sites 12.5.6.2.2 Activities which could affect sites of cultural significance to maori 	The site is not implicated by these features. Complies	
12.5A Heritage Precincts	There are no Heritage Precincts that apply to the site.	N/A - None of these features apply to the site. Complies	
12.6 Air	Not applicable	N/A	

	District Wide Standa	rds
Rule	Standard	Performance/Comments
12.7 Lakes, Rivers, Wetlands and the Coastline	12.7.6.1.1 Setback from lakes, rivers and the coastal marine area 12.7.6.1.2 Setback from smaller lakes, rivers and wetlands Permitted = for rivers minimum setback of 10 x the average width of the river where it passes through or past the site provided that the minimum setback is 10m and the maximum is no more than minimum required by Rule 12.7.6.1.1 12.7.6.1.4 Land Use Activities involving the Discharges of Human Sewage Effluent 12.7.6.1.5 Motorised Craft 12.7.6.1.6 Noise	N/A – None of these rules are implicated by the proposal.
12.8 Hazardous Substances		N/A Complies
12.9 Renewable Energy and Energy Efficiency		N/A Complies
13 Subdivision		N/A – No subdivision proposed.
14 Financial Contributions		N/A – No financial contributions required.

	District Wide Standa	rds
Rule	Standard	Performance/Comments
15 Traffic, Parking and Access		The wastewater report promotes a maximum use of the site to 150 people. The proposal items do not change this limit in terms of traffic generation. Thus the proposal is considered permitted. Similarly, for parking the changes are not considered to warrant an increase in parking demand. Access is existing to the site and no changes are proposed. Complies.
16 Signs & Lighting		N/A – No signage is proposed.

Table 3 - PDP Rules

Proposed District Plan				
Matter	Rule/Std Ref	Relevance	Compliance	Evidence
Hazardous	Rule HS-R2 has	N/A	Yes	Not proposed.
Substances	immediate legal			
Majority of	effect but only for a			
rules relates	new significant			
to	hazardous facility			
development	located within a			
within a site	scheduled site and			
that has	area of significance			
heritage or	to Māori, significant			
cultural items	natural area or a			
scheduled	scheduled heritage			
and mapped	resource			
however Rule				
HS-R6	HS-R5, HS-R6, HS-			
applies to any	R9			
development				
within an SNA				
– which is not				
mapped				

Heritage Area Overlays (Property specific) This chapter applies only to properties within identified heritage area overlays (e.g. in the operative plan they are called precincts for example)	All rules have immediate legal effect (HA-R1 to HA-R14) All standards have immediate legal effect (HA-S1 to HA-S3)	N/A	Yes	Not indicated on Far North Proposed District Plan
Historic Heritage (Property specific and applies to adjoining sites (if the boundary is within 20m of an identified heritage item)). Rule HH-R5 Earthworks within 20m of a scheduled heritage resource. Heritage resources are shown as a historic item on the maps) This chapter applies to scheduled heritage	All rules have immediate legal effect (HH-R1 to HH-R10) Schedule 2 has immediate legal effect	N/A	Yes	Not indicated on Far North Proposed District Plan

resources – which are called				
heritage items				
in the map				
legend				
Notable Trees (Property specific) Applied when a property is showing a scheduled notable tree in the map	All rules have immediate legal effect (NT-R1 to NT- R9) All standards have legal effect (NT-S1 to NT-S2) Schedule 1 has immediate legal	N/A	Yes	Not indicated on Far North Proposed District Plan
Sites and Areas of Significance to Māori (Property specific) Applied when a property is showing a site / area of significance to Maori in the map or within the Te Oneroa-a Tohe Beach Management Area (in the operative plan they are called site of cultural significance to Maori)	All rules have immediate legal effect (SASM-R1 to SASM-R7) Schedule 3 has immediate legal effect	Yes	Yes	Not relevant.
Ecosystems and Indigenous Biodiversity	All rules have immediate legal effect (IB-R1 to IB- R5)	N/A	Yes	Not indicated on Far North Proposed District Plan

SNA are not mapped – will need to determine if indigenous vegetation on the site for example Activities on the Surface of Water	All rules have immediate legal effect (ASW-R1 to	N/A	Yes	Not indicated on Far North Proposed District
Earthworks all earthworks (refer to new definition) need to comply with this	The following rules have immediate legal effect: EW-R12, EW-R13 The following standards have immediate legal effect: EW-S3, EW-S5	Yes	Yes	With respect ofEW-R12, thisrequires that theproposedearthworkscomply with EW-S3. In effect, EW-S3 triggers theneed for an ADPto be applied. It isconfirmed thatthe proposedearthworks willcomply with anADP, and this isvolunteered as acondition ofconsent.EW-R13 links toEW-S5. EW-S5requiresearthworks to becontrolled inaccordance withGD-05. It isconfirmed herethat theearthworks will

Signs (Property specific) as rules only relate to situations where a sign is on a scheduled heritage resource (heritage item), or within the Kororareka Bussell or	The following rules have immediate legal effect: SIGN-R9, SIGN- R10 All standards have immediate legal effect but only for signs on or attached to a scheduled heritage resource or heritage area	N/A	Yes	Not indicated on Far North Proposed District Plan		
Kerikeri Heritage						
Areas						
Orongo Bay	Rule OBZ-R14 has	N/A	Yes	Not indicated on		
(Property	legal effect because			Proposed District		
specific as	RD-1(5) relates to			Plan		
rule relates to	water					
a zone only)						
Comments:	Comments:					
No consents are required under the PDP.						

Clause 2(1)(d) of Schedule 4 of the RMA requires applicants to identify other activities of the proposal with the intention of capturing activities which need permission or licensing under other enactments.

As outlined in the report prepared by Water Flow (Refer <u>Appendix 5</u>) a discharge consent is also required from the Northland Regional Council.

A separate application for consent has been prepared for these matters and forms part of <u>Appendix 6</u>. Consents are being sought from both authorities concurrently.

<u>Section 9.4</u> provides a more considered assessment of relevant NPS's and NES's and in summary, no consents are required under these higher order documents.

6.0 NOTIFICATION ASSESSMENT

6.1 **Public Notification**

Table 4 – Notification Process

The table below outlines the steps associated with public notification insofar as it relates to s95 of the Act.

Step 1	Mandatory public notification
S95A(3)(a)	Has the applicant requested

<u>Step 1</u>	Mandatory public notification in certain circumstances	
S95A(3)(a)	Has the applicant requested that the application be publicly notified?	No
S95A(3)(b)	Is public notification required under section 95C?(after a request for further information)	TBC
S95A(3)(c)	Has the application been made jointly with an application to exchange recreation reserve land under section 15AA of the Reserves Act 1977.	No
Step 2	if not required by step 1, public notification precluded in cer circumstances	<u>tain</u>
S95A(5)(a)	Is the application for a resource consent for 1 or more activities and each activity is subject to a rule or national environmental standard that precludes public notification?	No
S95A(5)(b)	 Is the application for a resource consent for 1 or more of the following, but no other, activities; (i) a controlled activity; (iii) a restricted discretionary, discretionary, or non-complying activity, but only if the activity is a boundary activity; 	No

The proposed development does not meet the tests for mandatory public notification, nor does it meet the tests for precluding public notification.

Therefore, an assessment of the proposals effects on the environment is required to ascertain the effects of the development and whether public notification is required. The section below provides this assessment.

7.0 EFFECTS ON THE ENVIRONMENT

Effects on persons who are owners and occupiers of the land in, on, or over which the application relates, or of adjacent land must be disregarded when considering effects on the environment (s 95D(a)). Those adjoining properties are shown below in Figure 4.

0 State Highway 12	Taheke	Far North	27000	Te Taha Maori Property Trust			685 m²	51 m²
3168 State Highway 12	Taheke	Far North	251900	Rita Cassidy, Matthew Iti Cope Mary Davis, Mathida Terehia de Har, Maralyn Dockerty, Judith Donaldson, Mildred Mirakahokimate Downes, Cherie Harris, Christine Harris, Ecowley Harris, Danielle Pikihuia Harris, Darren Reed Harris, Dennis Wayne Harris, Ecowley Harris, Sizabeth Harris, Kelta Aheinga Harris, Lana Harris, Marcus Harris, Michelle Harris, Mirama Harris, Sizabeth Harris, Kelta Aheinga Harris, Lana Harris, Marcus Harris, Michelle Harris, Niriama Harris, Shona Harris, Solomon Whakahoro Harris, Talmadge Temura Harris, Traoeu Lee Margaret Harris, Shona Harris, Solomon Whakahoro Harris, Talmadge Temura Harris, Terebue Lee Margaret Harris, Shona Harris, Milliam Harris, William Tautoro Harris, Wiremu Paki Perepere Kire, Nada McDonald, Tammy Diane Nathan, Waata Ngapera, Jawel Densee Paeka, Mini Katrina Atlama, Angela Christine Southon, Jane Southon, Ronald Earli Southon, Millie Mir Thomas, Maraea Venus Toa Toa, Avrildiane Toia, Jacqueline Olivia Tola, Maria Cecelia Tolia, Thomas Kirkpatrick Toia, William Ernes Haehangi Tola, Ngawal Wairama, Flora Caroline Whalley, Andrew Makea Nui White, Gala Tauteka White, Gae April White, Lester Tonotu White, Pride Jarrod White, Sabrina Gay	01 Jan 1900	34500	3.2375 ha	
3184 State Highway 12	Taheke	Far North	238500	Waru Rau Cassidy,Batory Rose Johnstone,Ruria Lucy Milich,Rongopatutaonga Te Puea Pene Smith,Mihi Maraea Dorothy Williams	01 Jan 1900	37500	2.1657 ha	90 m²
3169 State Highway 12	Taheke	Far North	374000	Bella Anderson, Maureen Ann Anderson, Winnie Ann Fields, Mari Barlow, Colleen Maree Bermingham, Gavin John Bermingham, Ike Heni Bermingham, Kelvin Birch, Linda Birch, Bernard Ross Cassidy, Carl Vernon Cassidy, Colin Howard Cassidy, Dick Patrick Tiu Cassidy, James Kevin Tawhai Cassidy, Jane Cassidy, Wapon Jasmine Cassidy, Dirkin Ernest Cassidy, Ron Charles Cassidy, Stephen Brian Cassidy, Wapon Douglas Cassidy, Darny IShane Davis, Duvali Lyail Davis, Georgina Wilma Rose Davis, Johnson Davis, Tina Davis, Hinemoa Edmonds, Frederick John Grace, Moana Agnes Hanover, Kerry Kim Jeanmeret Gris, Anna Mary Joseph, Herewini Katete, Hone Mohi Katete, Reipae Pene Moses Katete, Te Ruha Reihana Katete, William Hoete Katete, Naomi Kereopa, Ewa Lazrus, Isabella Mokau, Angela Rose Nelson, Jan. Leslie Nodder, Rongopatutaonga Pene, Ariana Pia, Arthur James Pia, Ernest Walter Pia, Hare Ruka Pia, Kelly Pia, Michael Pia, Raymond Pia, Raymond John Clark Pia, Ronal Te Ancha Pia, Ronnie Pia, Sterena Marie Pia, Taini Paerau Pia, Wi Whatepu Pia, Akipa Pou, Denise Sandra Ata Pou, Donald Pou, Ellen Pou, Heni Pou, Jerön Jeu, Joseph Frederick Pul, Lurg Pou, Maarara Pou, Melva Danity Pou, Pakau Pou, Rhonda Shirley Ruruhi Pou, Robert Aldern Pou, Samuel Charles Pou, Shanon Hineari Pou, Turi Hoani Pou, Witule Pou, Te Rongopai Reihana, Adama Desmond Shieford, Derek Wayes Sheford, Alveili Gary Sheflord, Kelly Tango, Melania Tango, Sahn Tango, Patsy Te Namu, Ripeka Kawe Tito, Marina Lee Williams, Marie Wogan, Cecil York, Margaret Young	01 Jan 1900	73000	5.7668 ha	80 m²
0 State Highway 12	Taheke	Far North	247900	Lorraine Pehi Littleton,Barry Pehi,Charlene Pehi,Daniel Pehi	01 Jan 1900	33000	2.8328 ha	

Figure 4 - Adjoining Properties (Source Prover)

7.1 Effects that May be Disregarded

The permitted baseline may be taken into account should the Council deem it relevant. Except for the proposal items, the majority of the site has consented and legally established items.

The proposal breaches the setback allowances to a road frontage by not providing the full 10m setback. The difference between the full 10m setback and the roughly 8m provided should be assessed in relation to effects generated by the proposal.

In terms of building coverage, the proposal exceeds the 12.5% permitted baseline by 5.7%. In terms of stormwater management, the proposal exceeds the 15% permitted baseline by 10.5%. The scope of assessment in relation to these matters is therefore limited to the increase above the permitted baseline.

Earthworks (if any) for the proposal will be permitted as there will not be a need for 5,000m³ of works or any retaining walls. The site is not subject to flooding, so no NRC rules are of concern.

In terms of traffic, parking and access, it is argued that the proposal items do little to increase demand for traffic generation, parking demand and increased standards for access. The proposal has been existing for some time and storage space and a new ablution block do not correlate to increased use of the marae, rather this relates to an enhanced experience for users.

7.2 Written Approvals

Given the setback breach, the approval of NZTA has been sought for the proposal. Initial consultation is provided in <u>Appendix 7.</u>

7.3 Effects Assessment

The following assessment has been prepared in accordance with Section 88 and Schedule 4 of the Act which specifies that the assessment of effects provided should correspond with the scale and significance of the proposal.

In terms of localised effects or Effects to People, this assessment is undertaken in <u>Section 8</u> of this Report. Therefore, assessment criteria which refer to adjacent sites or properties, are addressed appropriately under that section of the report.

Item & Assessment Criteria	Comments
Positive Effects	• The proposal will provide for resilience and upgraded facilities for tangata whenua and other users of the Marae.
	• The proposal, from application through to development, employs a number of service providers and sellers of goods.
	• The proposal seeks to minimise the effects from earthworks and wastewater by considered engineering design and mitigation measures.
Stormwater Management (Derived from	• The proposal is supplemented by a Stormwater Report found in <u>Appendix 8</u> . The primary mitigation measures for stormwater attenuation is the use of tanks to be retrofitted on the site to attenuate back to permitted activity levels.
11.0)	 In addition to the above, to limit scour and erosion a dispersion device is proposed and to be located down site of the tanks.
	• Stormwater quality management is likely to be minimal as per the report. However, mitigation measures such as leaf guards, the tanks, sedimentation storage, and reducing direct discharges are all promoted within the stormwater design.
Setback from Boundaries	• The mattress room being located <10m from the SH12 boundaries does not decrease outlook and privacy of

Table 5 – Effects Assessment

,	
(Derived from 8.6.5.3.4)	 adjacent properties. The addition is within the same footprint as the Wharehui. Access / egress to and through the site is not implicated by the location of the addition. Planting is not proposed and there is no planting along the SH frontage currently. The entire Wharehui is visible and the mattress room will be no different to what is seen currently in terms of the existing shed and concrete tanks (i.e built development is being replaced by built development). There are no adjoining esplanade reserves / strips in the surrounds impacted.
Building	• No landscaping is proposed for the application. The proposal
Coverage	seeks to enhance and upgrade facilities for the marae activity. The site has limited landscaping at present and the site is known for the activities undertaken. The use of landscaping is not considered appropriate in this instance to condition.
11.24	• The marae is an existing activity on the site and surrounds and the proposal items are consistent with the underlying use / activity. Activities in the surrounds are low density (2 x dwellings). The proposal items seek to match existing character and appearance of the marae at present.
	 The scale and bulk of the proposal is outlined in the Site Plan found in <u>Appendix 2</u>.
	• There are no ONL / ONF on the sites or in the surrounds. Adjacent sites are not considered implicated by the increase of buildings as they are aware of the function and requirements of marae to be located where they are located. The positioning of each proposal item has considered surrounding parties / persons and are located in similar positions to existing built development.
	• For the same reasons as outlined above, the proposal has little need for landscaping or other visual mitigation measures.

	• Private open spaces of the 2 x dwellings in the surrounds are not implicated by the marae proposal items.
Effects Conclusion	Considering the assessment above and the mitigation measures proposed it is considered that the proposal results in effects which are less than minor.

8.0 EFFECTS TO PEOPLE

The table below outlines the steps associated with limited notification insofar as it relates to s95 of the Act.

Step 1	certain affected groups and affected persons must be notif	fied
S95B(2)(a)	Are there any affected protected customary rights groups?	No
S95B(2)(b)	Are there any affected customary marine title groups (in the case of an application for a resource consent for an accommodated activity)?	No
S95B(3)(a)	Is the proposed activity on or adjacent to, or may affect, land that is the subject of a statutory acknowledgement made in accordance with an Act specified in Schedule 11?	No
S95B(3)(b)	Is the person to whom the statutory acknowledgement is made is an affected person under section 95E?	No
Step 2	if not required by step 1, limited notification precluded in certain circumstances	
S95B(6)(a)	the application is for a resource consent for 1 or more activities, and each activity is subject to a rule or national environmental standard that precludes limited notification:	No
S95B(6)(b)	the application is for a controlled activity (but no other activities) that requires a resource consent under a district plan (other than a subdivision of land)	No

8.1 Affected Person Determination

As the proposed activity does not trigger mandatory limited notification, nor is it precluded, an assessment of potential affected persons must be undertaken.

The consent authority has discretion to determine whether a person is an affected person. A person is affected if an activity's adverse effects are minor or more than

minor to them. The effects of the proposal on adjacent landowners has been undertaken below.

8.2 Written Approvals Received

NZTA approval has been sought and will be provided on receipt.

8.3 Localised Effects Assessment (Effects to Persons)

Section 7 of this report provides a graphic and table of the relevant adjacent properties that this assessment relates. The relevant persons associated with the assessment are found in Figure 4 in Section 7.0 of this report.

For the following reasons, those parties and persons above not considered to be adversely affected by the proposal to a minor or more than minor level:

- All proposed works are situated within the confines of the site. All effects can be managed on site.
- The assessment found in <u>Section 7</u> of this report details that there are no effects to localized person in terms of setbacks, stormwater coverage and building coverage.
- The proposed works are essentially to replace and enhance existing buildings and infrastructure on site.

8.4 Effect to Persons Conclusion

Having considered the effects above, there are no adversely affected persons resulting from the proposal.

9.0 STATUTORY CONTEXT

9.1 Operative Far North District Plan

An assessment of the relevant objectives and policies associated with the Operative Far North District Plan has been undertaken below.

This application is subject to the provisions of the Operative Far North District Plan. The site is zoned Rural Production and is to be assessed in terms of the objectives and policies for the zone and the district-wide subdivision and environment provisions.

The proposal would achieve the purpose of the Rural Production zone which is to ensure its' ongoing rural productive purpose that encompasses a wide-range of compatible land use activities, including limited rural lifestyle and residential opportunities in a manner that avoids, remedies or mitigates adverse effects.

It is anticipated that the size and form of the proposal (which is in general accordance with Council standards) would:

- Promote the sustainable management of natural and physical resources in the RPZ (Obj 8.6.3.1);
- Enable the efficient use and development of the RPZ in a way that enables people and communities to provide for their <u>social</u>, economic, and <u>cultural</u> wellbeing and for <u>their health and safety</u> (Obj 8.6.3.2);
- Promote the maintenance of amenity values of the RPZ to a level that is consistent with the productive intent of the zone (Obj 8.6.3.3);
- Avoid, remedy or mitigate the actual or potential conflicts between new land use activities and existing lawfully established activities (reverse sensitivity) within the RPZ (Obj 8.6.3.6);
- Avoid, remedy or mitigate the adverse effects of incompatible use or development on natural and physical resources (Obj 8.6.3.8);

Having considered these sections of the Plan, it is concluded that the proposal is not inconsistent with the relevant objectives and policies of the Far North District Plan.

9.2 Proposed Far North District Plan

The Far North District Council have released their Proposed District Plan.

Section 88A(2) provides that "any plan or proposed plan which exists when the application is considered must be had regard to in accordance with section 104(1)(b)." This requires applications to be assessed under both the operative and proposed objective and policy frameworks from the date of notification of the proposed district plan.

In the event of differing directives between objective and policy frameworks, it is well established by case law that the weight to be given to a proposed district plan depends on what stage the relevant provisions have reached, the weight generally being greater as a proposed plan move through the notification and hearing process. In Keystone Ridge Ltd v Auckland City Council, the High Court held that the extent to which the provisions of a proposed plan are relevant should be considered on a case by case basis and might include:

- The extent (if any) to which the proposed measure might have been exposed to testing and independent decision making;
- Circumstances of injustice; and
- The extent to which a new measure, or the absence of one, might implement a coherent pattern of objectives and policies in a plan.

In my view the PDP has not gone through the sufficient process to allow a considered view of the objectives and policies for the Maori Purpose – Rural Zone however this has still been provided below.

The proposed use ensures the viability of the marae for future generations (MPZ-01) and enables the ongoing use of the marae for social and cultural purposes (MPZ-02). The supporting engineering reports that the proposal reflects the carrying capacity of the land and surrounding environment (MPZ-03).

The land is maori freehold land and the development is also managed under Te Ture Whenua Maori Act 1993 (MPZ-P1). The proposal is considered compatible with the surrounds, doesn't compromise occupation of the land, rather reinforces it, doesn't impact adjoining sites, maintains existing character and amenity, provides for

community wellbeing and safety, and is serviced by the proposed infrastructure. Overall, all effects can be mitigated appropriately (MPZ-P3).

In terms of MPZ-P4, the proposal meets many of the requirements sought, within the confines of the scale and significance of the activity which is considered as reasonably low in nature. Overall, the proposal is not considered inconsistent with the Maori Purposes Zone.

9.3 Regional Policy Statement for Northland (RPS)

An assessment of the relevant objectives and policies associated with the RPS for Northland has been undertaken and is found in <u>Table 7</u> below. The RPS sets region wide objectives and policies for the environment.

Objective / Policy	Comment
Integrated Catchment Management	Not relevant
Region Wide Water Quality	Not relevant
Ecological Flows and Water Quality	Not relevant
Indigenous Ecosystems & Biodiversity	There are no SNA's on the site.
Enabling Economic Wellbeing	The proposal allows for various goods/services in the land development sector in Taheke.
Economic Activities – Reverse Sensitivity And Sterilization	The proposal does not result in any reverse sensitivity or sterilization effects given the design and scale of the proposal.
Regionally Significant Infrastructure	The proposal does not impact any regionally significant infrastructure.
Efficient and Effective Infrastructure	The proposal seeks to use existing infrastructure i.e FNDC / NZTA roads. The proposal also seeks to upgrade on site infrastructure for future generations.

Table 7 – NRC RPS Review

Security of Energy Supply	Power is provided to the site.
Use and Allocation of Common Resources	Not relevant.
Regional Form	The proposal does not result in any reverse sensitivity effects, or a change in character or sense of place. Versatile soils are not adversely affected.
Tangata Whenua Role in Decision Making	The Marae trustees are considered appropriate in this respect.
Natural Hazard Risk	Nil affecting the site.
Natural Character, Outstanding Natural Features, Outstanding Natural Landscapes And Historic Heritage	Not relevant.

Having considered the relevant components of the RPS, it is concluded that the proposal is not inconsistent with the relevant objectives and policies.

9.4 National Policy Statements and Plans

With respect to the National Environmental Standard – Soil Contamination, the property file has been reviewed which shows no known activities that are on the HAIL.

In terms of the NES – Freshwater Management, there are no wetlands located on the site. The NES is not considered relevant.

In terms of the NPS for Highly Productive Land. The site does not contain Class 1-3 soils.

The site is not located in the Coastal Environment. The NZCPS is not considered relevant.

10.0 PART 2 ASSESSMENT

10.1 Section 5 - Purpose of the Act

Section 5 in Part 2 of the Act identifies the purpose as being the sustainable management of natural and physical resources. This means managing the use of natural and physical resources in a way that enables people and communities to provide for their social, cultural and economic well-being which sustain those resources for future generations, protecting the life supporting capacity of ecosystems, and avoiding remedying or mitigating adverse effects on the environment.

It is considered that proposal represents Part 2, Section 5 of the Act.

10.2 Section 6 - Matters of National Importance

In achieving the purpose of the Act, a range of matters are required to be recognised and provided for. This includes:

a) the preservation of the natural character of the coastal environment (including the coastal marine area), wetlands, and lakes and rivers and their margins, and the protection of them from inappropriate subdivision, use, and development:

b) the protection of outstanding natural features and landscapes from inappropriate subdivision, use, and development:

c) the protection of areas of significant indigenous vegetation and significant habitats of indigenous fauna:

d) the maintenance and enhancement of public access to and along the coastal marine area, lakes, and rivers:e) the relationship of Maori and their culture and traditions with their ancestral lands, water, sites, waahi tapu, and other taonga:f) the protection of historic heritage from inappropriate subdivision, use, and development:

g) the protection of protected customary rights:

h) the management of significant risks from natural hazards.

In context, the relevant items to the proposal and have been recognised and provided for. Section 6(e) is directly relevant to the proposal.

10.3 Section 7 - Other Matters

In achieving the purpose of the Act, a range of matters are to be given particular regard. This includes:

(a) kaitiakitanga:

- (aa) the ethic of stewardship:
- (b) the efficient use and development of natural and physical resources:

(ba) the efficiency of the end use of energy:

- (c) the maintenance and enhancement of amenity values:
- (d) intrinsic values of ecosystems:

(e) [Repealed]

- (f) maintenance and enhancement of the quality of the environment:
- (g) any finite characteristics of natural and physical resources:

(h) the protection of the habitat of trout and salmon:

(i) the effects of climate change:

(j) the benefits to be derived from the use and development of renewable energy.

These matters have been given particular regard through the design of the proposal.

10.4 Section 8 - Treaty of Waitangi

The Far North District Council is required to take into account the principles of the Treaty of Waitangi when processing this consent. This consent application may be sent to local iwi and hapu who may have an interest in this application.

10.5 Part 2 Conclusion

Given the above, it is considered that the proposal meets the purpose of the Act.
11.0 CONCLUSION

Discretionary Activity resource consent is sought from the Far North District Council to carry out the proposed development.

The proposal is considered to result in less than minor effects on the environment and through assessment, there are considered to be no affected persons.

The proposal is consistent with the objectives and policies of the Far North District Plans, the Regional Policy Statement for Northland, and achieves the purpose of the Act. Relevant NPS' and NES' have been considered with the proposal finding consistency with their general aims and intent.

Given the assessment carried out in this report, it is considered that this proposal can be determined non-notified under the RMA 1991.

We appreciate draft conditions to be supplied to us prior to decision being made.

Regards,

Steven Sanson BPlan (Hons) Consultant Planner NZPI Member No 4230

RECORD OF TITLE UNDER LAND TRANSFER ACT 2017 FREEHOLD

of Land

Guaranteed Search Copy issued under Section 60 of the Land Transfer Act 2017

Identifier	614381
Land Registration District	North Auckland
Date Issued	19 March 2013

Prior References 614379

Estate	Fee Simple
Area	5047 square metres more or less
Legal Description	Taheke B Block Maori Land Plan 441020
Purpose	for the common use of the Ngati Pakau
	and Mahurehure Sub-tribes and for Maoris
	living in and near Taheke as a marae

Registered Owners

Eddie Paul Morunga, Phillip Gordan Mitchell Reihana Ruka, Nicola Ann Birch, Candy Rangimarie Cassidy-Ellice, Agnes Alicia Tauiti, Morris Baker, Ewa Haua, Timi Tumanako Ngatai-Haenga, Hohepa Pene Joseph Henare, Paul Hugh Birch and Myrene Christiane Rakete as responsible trustees jointly, no survivorship

Interests

Appurtenant hereto is a carpark easement created by Maori Land Court Order 9344039.6 - 19.3.2013 at 7:00 am

Report on Maori Land details for the following Record(s) of Title

Record(s) of Title 614381

Identified as potentially Maori Freehold Land

*** End of Report ***

6 TTK 54-55 and 41 TTK 101-102

ORDER CREATING AN EASEMENT

Te Ture Whenua Māori Act 1993, Section 315

The Maori Land Court of New Zealand Taitokerau District

IN THE MATTER

of the land known as Taheke 12B

At sittings of the Court held at Whangārei on the 20th day of May 2010 and on the 31st day of May 2012 before David John Ambler, Judge

<u>WHEREAS</u> application was filed by Kereama Maihi to create an easement over the said land

<u>AND WHEREAS</u> during the course of proceedings and considering all evidence adduced in support thereof the Court of its own motion pursuant to Section 37(3) and Section 71 of Te Ture Whenua Māori Act 1993 varied the said application to give effect to an arrangement in respect of the said land and Taheke B

<u>NOW THEREFORE</u> the Court upon reading and hearing all evidence adduced in support thereof and being satisfied on all matters upon which it is required to be so satisfied

<u>HEREBY ORDERS</u> pursuant to Section 315 of Te Ture Whenua Māori Act 1993 that an easement for the purpose of a carpark is created over area 'A' of Taheke 12 B on ML 441020 in favour of Taheke B, their invitees, service people, assignees or successors subject to the terms and conditions set out in the Third Schedule attached hereto

AND THE COURT DOTH HEREBY FURTHER DECLAR Maori Land Court Rules 1994 that this order do issue, IN the Court

AS WITNESS the hand of the Judge and th

A20090018407 A20090018449 The second second

rule 66(3) of the office of

FIRST SCHEDULE

Blocks		Area
Taheke 12B	Servient land	948m2 marked 'A' as defined on plan ML 441020

SECOND SCHEDULE

Blocks		Area
Taheke B	Dominant land	5047m2

THIRD SCHEDULE

TERMS OF EASEMENT

- 1 The trustees of Taheke B and their invitees shall be entitled to use area 'A' for the purpose of a marae carpark.
- 2 The easement shall be for a term of 10 years with a right for the Trustees of Taheke B to extend the easement for a further term of 10 years.
- 3 The trustees of Taheke B shall be responsible for the maintenance and upkeep of the carpark, driveways, culverts, crossings and overflow drains and for the erection and maintenance of any fences and gates and the costs thereof in respect of 'A'.
- 4 The trustees of Taheke B shall ensure that their use of area 'A' does not impede the access to and from State Highway 12 of the owners of Taheke 12B and their invitees.
- 5 Should the Maori Reservation in respect of Taheke B ever be permanently cancelled then this easement shall be cancelled.

(三) (1) (二)

Schedule / Memorandum

	Proposed Ea	asement Schedule	
Shown	Purpose	Servient Tenement	Dominent Tenement
А	Right to Park Vehicles	Taheke 128	Taheke B

_ ____

ML 441020 - Title Plan

Generaled on 22/07/2011 09:03am

Fage 2 of 3

Landor	oline

- .**.**.

Toitu te-Land whenua Information New Zealand

. .

Title Plan - ML 441020

	ML 441020			
Surveyor Reference	6560 NRS 079 Taheke Marae			
Surveyor	Nigel Hugh Ronald Ross Surveyors North			
Survey Firm				
Surveyor Declaration	I Nigel Hugh Ronald Ross, being a licensed cadastral surveyor, certify that:			
	(a) this dataset provided by me	and its related survey are accu	rate, correct and in a	accordance with the
	Cadastral Survey Act 2002 and	the Rules for Cadastral Survey	2010, and	
	Declared on 21 Jul 2011 05:20	y ne or onder my personal dre PM	ectori,	
Survey Datall.				
Datarat Danasiatia	Tabeka 12B and Tabeke B			
Status	And the state of t			
round Wetwar	North Augeland	Queries Clare	Class B	
faint misteri	11/07/2011	Survey Class	5-1634 D 1 Thank 12/07/2011	
Suturning Date	20072011	Survey Approva	DATEROOUTOLI	
		Deposit Date		
Territorial Authoritie	5			
Far North District				
Comprised In				
Compelsed In CT 500065				
Comprised In CT 500065 CT 496142				
Comprised In CT 500065 CT 496142 Created Parcels	-			
Comprised In CT 500065 CT 496142 Created Parcels Parcels		Parcel Intent	Area	CTReference
Comprised In CT 500065 CT 496142 Created Parcels Parcels Tabeke B Block Maoi		Parcel Intent Maori	Area 0.5047 Ha	CT Reference
Comprised In CT 500065 CT 496142 Created Parcels Parcels Tabeke B Block Maon Tabeke J2B Block M	ri Land Plan 441020 aori Land Plan 441020	Parcel Intent Maori Maori	Area 0.5047 Ha 2.1657 Ha	CT Reference
Comprised In CT 500065 CT 496142 Created Parcels Parcels Tabeke B Block Maon Tabeke 12B Block M Area A Moori Land P	ri I.and Plan 441020 aori Land Plan 441020 Jan 441020	Parcel Intent Maori Maori Eascinent	Area 0.5047 Ha 2.1657 Ha	CT Reference
Comprised In CT 500065 CT 496142 Created Parcels Parcels Tabeke B Block Maon Tabeke J2B Block M Area A Moori Land P Total Area	ri Land Plan 441020 aori Land Plan 441020 Jan 441020	Parcel Intent Maori Maori Easement	Area 0.5047 Ha 2.1657 Ha 2.6704 Ha	CT Reference

Generated on 22/07/2011 09:03am

· · · · ·

Page 1 of 3

NOTES:

Major Contours are at 1.0m intervals. Minor Contour are at 0.2m intervals. Contours are interpolated only.

This survey has been completed to standard topographical surve accuracies of approximately between +/- 0.03m to 0.05m. If a higher accuracy is required then further survey measurements will be necessary.

Bearing and Coordinate Datum: Mount Eden 2000 Levels are in terms of NZ Vetical Datum 2016 Origin of Levels: IS V SO 46034, RL:20.66.

Existing Easement			
Purpose	Shown	Servient Tenement	Dominant Tenement
Right to Park Vehicles	Α	Taheke 12B	Taheke B

Original Scale	Date	Revision No	00
1:200 A1	15/04/2023	Drawing No	ΤΟΡΟ
CAD File & Directory	/	lah Na	Tababa
Taheke Topo1 - Top	0	JUD INO	Taheke

Permitteed Setback = 3m min from road boundaries, 1.2m from boundaries other than road boundary (no set back required for max

Driveway	232.0m²
Concrete Area	134.0m²
Buildings	920.8m²

CLIENT CONSENT SET

Arcline Architecture Ltd 49 Matthews Ave, Kaitaia, New Zealand (Ph): 09 408 2233 (Email): info@arcline.co.nz PROPOSED FLOOR PLAN TAHEKE MARAE PROPOSED ABLUTION BLOCK

Rev No.

Revision

Note:

All eaves as shown on plans

Smoke Detectors: Installed throughout the dwelling complying with NZ Building Code NZBC F7/AS1

Mount detectors on ceilings, minimum 300mm from any adjacent walls

Lining 10mm standard GIB lining to walls 13mm standard GIB to ceilings 20mm strand board to floors

Doors All internal door heights 1980 unless otherwise noted

Access Routes To all access routes both external and internal, provide anti-slip surface complying with NZ BC D1/AS1

Fire Alarm - All works in accordance to RJ Services Fire Report

-Install new Type 5 Fire Alarm System in the Wharehui with a Type 4 Alarm System in the new Mattress Room

-Wall between Wharehui and Mattress room to be fire rated FRR 60/60/60 to the roof of the Wharehui (GBTL60)

-Install compliant exit signage as per fire report

Date

Scale: 1 : 200 Drawn by: ARCLINE Issued: 14/06/2023 11:14:49 am

CLIENT CONSENT SET

cavity, on fastwrap building underlay

Date

Revision

Scale: 1:150 Drawn by: ARCLINE Issued: 14/06/2023 11:14:50 am

(Ph): 09 408 2233 (Email): info@arcline.co.nz

Architecture

Scale: 1:150 Drawn by: ARCLINE Issued: 14/06/2023 11:14:51 am

CLIENT CONSENT SET

Arcline Architecture Ltd 49 Matthews Ave, Kaitaia, New Zealand (Ph): 09 408 2233 (Email): info@arcline.co.nz

PERSPECTIVES

TAHEKE MARAE PROPOSED ABLUTION BLOCK

Drawn by: ARCLINE Issued: 14/06/2023 11:14:54 am

GEOTECHNICAL INVESTIGATION REPORT

3184 STATE HIGHWAY 12, TĀHEKE, NORTHLAND

TAHEKE MARAE TRUSTEES

C0294-G-01 JULY 2023 REVISION 1

DOCUMENT MANAGEMENT

Document Title	Geotechnical Investigation Report
Site Reference	3184 State Highway 12, Tāheke, Northland
Client	Taheke Marae Trustees
Geologix Reference	C0294-G-01
Issue Date	3 July 2023
Revision	01
Prepared by	Sean Shin Geotechnical Engineer, BEng (Hons)
Approved by	Edward Collings Managing Director, CPEng Reg, CMEngNZ, CEnvP, MPhys (Hons)
File Reference	\\SilverdaleNAS\Geologix Files

REVISION HISTORY

Date	lssue	Prepared	Reviewed
July 2023	First Issue – For Consent	SBS	EC

TABLE OF CONTENTS

1	INTRODUCTION	5		
1.1	PROPOSED DEVELOPMENT	5		
2	SITE DESCRIPTION	5		
3	DESKTOP APPRAISAL	6		
3.1	INFRASTRUCTURE REVIEW	7		
3.2	OVERLAND FLOW PATH AND FLOOD PLAINS	7		
3.3	GEOLOGY	8		
3.4	RECENT EARTHWORKS	9		
3.5	EXISTING GEOTECHNICAL INFORMATION	.0		
4	GROUND INVESTIGATION	.0		
4.1	SITE WALKOVER SURVEY	.0		
4.2	GROUND CONDITIONS	.1		
5	GEOTECHNICAL ASSESSMENT	.3		
5.1	GEOTECHNICAL DESIGN PARAMETERS	.3		
5.2	SITE SUBSOIL CLASS	.4		
5.3	SEISMIC HAZARD	.4		
5.4	SITE STABILITY	.5		
5.5	SOIL EXPANSIVITY	.5		
5.6	LIQUEFACTION POTENTIAL	.6		
6	GEOTECHNICAL RECOMMENDATIONS	.6		
6.1	FOUNDATIONS	.6		
6.2	EARTHWORKS AND METHODOLOGY 1	.7		
6.3	RETAINING WALLS	.9		
6.4	Driveways and Car Parking 1	.9		
6.5	CONSTRUCTION MONITORING	20		
7	LIMITATIONS	20		
APPENDIX A				
APPENDIX B23				

FIGURES

FIGURE 1: SITE SETTING	. 6
FIGURE 2: MAPPED RIVER FLOOD HAZARD ZONE OF THE SITE	. 7
FIGURE 3: NORTHERN ALLOCHTHON SOIL PROFILE	. 8
FIGURE 4: OBSERVED EXPOSED CUT SURFACE BEHIND THE WHAREKAI BUILDING.	. 9
FIGURE 5: OBSERVED EXPOSED CUT SURFACE AT THE NORTH-EASTERN CORNER OF THE SITE	. 9

TABLES

TABLE 1: SUMMARY OF GROUND INVESTIGATION	. 13
TABLE 2: GEOTECHNICAL EFFECTIVE STRESS PARAMETERS	. 14
Table 3: Summary of Seismic Hazard Parameters	. 15
TABLE 4: EARTH PRESSURE PARAMETERS	. 19

1 INTRODUCTION

This Geotechnical Investigation Report has been prepared by Geologix Consulting Engineers Ltd (Geologix) for Taheke Marae Trustees as our Client in accordance with our standard short form agreement and general terms and conditions of engagement.

The purpose of this report is to assist with Building Consent application in relation to additions and upgrades to Taheke Marae, over a rural property at 3184 State Highway 12, Tāheke, Northland, the 'site'. Specifically, this report provides interpretation of a site-specific ground investigation and geotechnical assessment to provide recommendations for the proposed development. This report may be used to assist with detailed design and for Building Consent application.

1.1 Proposed Development

It is understood that the Client proposes to demolish and clear an existing concrete water tank and extend the existing Wharehui building towards the southwest, and to construct a new veranda and a canopy to the north and to the northwest of the existing Wharekai building. The client also proposes to demolish and clear the existing ablution block and construct a new ablution block at a future stage of the development.

The aforementioned understanding of the proposed development has been established from an initial development concept plan supplied to Geologix at the time of writing¹. Based on the supplied plans, we have considered a conservative assessment of potential development earthworks. It is recommended that this report is subject to review and necessary amendment once specific development plans are available.

2 SITE DESCRIPTION

The site is presented within a typical rural area to the south of State Highway 12 as a small block of land. The site is legally described as Taheke B Block ML 441020 and is irregular in shape with a gross site area of approximately 5047 m². The site setting is presented schematically as Figure 1 below.

Topographically, the site is located to the north-eastern slope of a larger hill, and dips gently at approximately 2 degrees from the southern boundary to the centre, then continues to dip gently at an average angle of approximately 6 degrees. Beyond the northern boundary, the land dips moderately towards State Highway 12 at

¹ Arcline Architecture, Taheke Marae Concept Plans.

approximately 16 degrees through a benched, suspected fill batter.

Figure 1: Site Setting²

There were multiple existing structures present on-site forming the established Marae including a single-storey Wharekai and Wharehui building connected by concrete pathways, a concrete water tank to the southwest of the Wharehui building, an ablution block, multiple septic tanks located to the west of the ablutions block, a gravel driveway running from the north-western corner along the southern side of the Wharehui building and ending at the north-western corner of the site.

Additionally, a fill rock wall (~0.5 m high) was seen approximately 25 m beyond the north-western corner of the site. Multiple water tanks were observed being placed at the time of our site visit, and two water tanks were seen located on a temporary cut platform near the north-western corner of the site.

Some minor disturbance to the natural profile is expected, with the existing Wharekai and Wharehui buildings expected to be formed by minor cut earthworks, the driveway was located on a cut platform and conventional cut earthworks were ongoing to install the water tanks.

3 DESKTOP APPRAISAL

To assist with our geotechnical appraisal, we have undertaken a detailed desktop

² Source:

https://nrcgis.maps.arcgis.com/apps/webappviewer/index.html?id=81b958563a2c40ec89f2f60efc99b13b

review of available information with a specific focus upon geotechnical influences.

3.1 Infrastructure Review

Available infrastructure information is provided by Far North District Council (FNDC) GIS system. According to the available data, no existing Council infrastructure is present within the site boundaries, and it is understood the site is serviced by an onsite 3 water infrastructure.

Geotechnically, the proposed structure foundations will not be influenced by existing public pipelines according to available data.

3.2 Overland Flow Path and Flood Plains

In general, it is expected that surface water will move as sheet flow following the site topography towards the northern boundary until intercepted by State Highway 12.

Available GIS information presented as Figure 2 below indicates that the nearest mapped river flood hazard zone associated with Takehe River under the 1 % AEP event (marked by light blue area) is located approximately 18 m to the north of the site, to the north of State Highway 12.

The risk of encountering weak alluvial soil is considered low due to the above information.

Figure 2: Mapped River Flood Hazard Zone of the Site³

³ Source:

https://nrcgis.maps.arcgis.com/apps/webappviewer/index.html?id=81b958563a2c40ec89f2f60efc99b13b

3.3 Geology

Available geological mapping⁴ indicates the site to be directly underlain by Punakitere Sandstone (Mangakahia Complex) in Northland Allochthon described as Weakly to moderately indurated, alternating thin- to thick-bedded, quartzofeldspathic sandstone and mudstone. The Northland Allochthon geology extends away from the site towards the southwest covering the existing larger hill.

3.3.1 Geomorphology

The underlying Northland Allochthon formation is known for its instability over shallow depths from relatively shallow slope angles. Typical failures are known to occur on natural topography of 15 ° and above with evidence of soil creep forming on slopes as shallow as 10°.

The geological unit can be defined by three typical layers: an upper clayey/silty soil mantle with low permeability which is typically indicated by water tolerant species such as reeds. Below the soil mantle, there is a transitional zone where groundwater perches above a relatively impermeable, completely weathered parent rock.

Shallow slips and long-term soil creep typically occur within the transition zone above the parent rock as shown in Figure 3 below. The Geotechnical effective stress parameters for the soil strata are conservatively modelled to reflect the properties of the Northland Allochthon formation.

Figure 3: Northern Allochthon Soil Profile

⁴ Geological & Nuclear Science, 1:250,000 scale Geological Map, Sheet 2, Whangarei, 2009.

3.4 Recent Earthworks

At the time of our ground investigation, an exposed cut face (approximately ~0.5 m in height) was visible on the southern side of the gravel driveway behind the Wharekai building as shown in Figure 4 below, indicating that the site is located on a cut platform. The cut batter exposed a thin layer of topsoil, followed by a layer of cohesive natural soil was observed.

Figure 4: Observed Exposed Cut Surface Behind the Wharekai Building.

Additionally, the site was also undergoing conventional cut earthworks to install the water tanks at the north-western corner facing State Highway 12. These earthworks exposed a cut face up to approximately 0.8 m in height as seen in Figure 5 which indicated presence of fill, potentially a site-won material, underlain by a layer of natural Northland Allochthon residual soil.

Figure 5: Observed Exposed Cut Surface at the North-eastern corner of the Site.

3.5 Existing Geotechnical Information

Existing subdivision and/or Building Consent ground investigations were not made available to Geologix at the time of writing. Additionally, a review of available GIS databases, including the New Zealand Geotechnical Database (NZGD) did not indicate borehole records within 500 m of the site. To improve the NZGD, exploratory records from our ground investigation were uploaded to the system.

4 GROUND INVESTIGATION

A site-specific walkover survey and intrusive ground investigation was undertaken by Geologix on 30 May 2023. The ground investigation was scoped to confirm the findings of the above information and to provide site-specific parameters for this geotechnical assessment and ground model. The ground investigation comprised:

- Two hand augered boreholes designated BH01 and BH02, formed as close as possible to the proposed development footprint with a target depth of 3.0 m below ground level (bgl). Refusal was encountered upon dense strata within BH02 at 2.6 m bgl.
- Both boreholes were extended with scala penetrometer probing techniques to a target depth of 5.0 m. Refusals were encountered at both BH01 and BH02 at similar depths ranging from 3.9 and 3.8 m bgl, respectively.
- Monitoring of groundwater levels with a groundwater dip meter on the day of drilling.
- 4.1 Site Walkover Survey

A visual walkover survey of the property confirmed:

- Topography is in general accordance with that outlined in Section 2 and the available GIS contours. Topographically, the site dips gently at approximately 2 degrees from the southern boundary to the centre, then continues to dip gently at approximately 6 degrees. Then the land dips moderately towards State Highway 12 at approximately 16 degrees through a benched fill batter.
- State Highway 12 defines the northern site boundary. Land to the east includes rural property of various sizes, land to the north includes the Taheke River, and land in other directions included open pasture.
- Existing structures are present on site including a single-storey Wharekai and Wharehui building connected with concrete pathways, a concrete water tank, multiple new water tanks, an ablution block, a small carpark on the eastern boundary and a gravel driveway running from State Highway 12 along the

perimeter of the site. It is understood that the concrete water tank will be demolished, and the ablution block will be demolished and rebuilt at a future development stage.

- There were no obvious signs of either shallow or deep slope instability such as tension cracks, hummocky ground or terraced land visible around the site.
- At the boundaries, a cut batter (~2.5 m high in total) was noted to be present at the northern boundary with a fill rock wall (~0.5 m high) approximately 25 meters beyond the north-western corner of the site. There was an exposed cut face (~0.5 m high) to the south of the gravel driveway. The site to the west and to the east were in general alignment with the neighbouring properties.
- There were private wastewater and water pipes located to the west of the ablutions block with the pipe alignments visible from the western side of the ablutions block towards the existing septic tanks. Based on the observations of the cut platform containing a layer of fill, historic site-won cut materials may have been placed around the west of the existing structures as uncontrolled/ landscape fills to backfill the existing pipelines.

4.2 Ground Conditions

Arisings recovered from the exploratory boreholes were logged by a qualified geotechnical engineering professional in accordance with New Zealand Geotechnical Society guidelines⁵. Engineering borehole logs are presented as Appendix B to this report and approximate borehole positions recorded on Drawing No. 200 within Appendix A. A detailed ground model has been derived from the investigation and locally available GIS data and supplied development plan presented as Drawing No. 201.

Strata identified during the ground investigation can be summarised as follows:

- **Topsoil to depths of 0.1 m bgl.** The overlying topsoil was described as a grassed topsoil containing organic silt, dark brownish black and moist with low plasticity.
- Non-engineered fill to depths ranging from 0.5 m to 0.6 m bgl. Non-engineered fill was encountered locally within BH02, which matched the layer of fill seen at the recent cut platform for the water tanks. The fill was described as a cohesive soil consisting of a very stiff silt, dark brown, moist with low plasticity.

⁵ New Zealand Geotechnical Society, Field Description of Soil and Rock, 2005.

A single in-situ field vane test recorded 170kPa, indicative of a very stiff layer.

• Northland Allochthon Residual Soil to depths ranging from 2.4 m to 3.3 m bgl. The residual soil was typically cohesive, described as clayey silt or silt, very stiff, light orange brown mottled white or grey, friable to low plasticity and moist. The residual soil generally had consistent strength throughout the strata.

Fifteen in-situ field vane tests undertaken within the Northland Allochthon Residual Soil recorded shear strengths ranging from 142 kPa to Unable to Penetrate (UTP), or generally very stiff soil. Characteristic unit vane shear strength has been determined to be 160 kPa at 95% confidence, confirming a generally very stiff strata.

The DCP profile within BH01 showed the strength increasing with depth, returning blow counts ranging from 1 to 10 blows per 100 mm penetration, which is indicative of a stiff to very stiff soil which aligns with the observed shear strengths. It was conservatively assumed that DCP blow counts up to 10 blows per 100 mm penetration is indicative of Northland Allochthon Residual Soil.

• Northland Allochthon Completely Weathered Parent Rock to a depth of 3.7 m bgl. The completely weathered parent rock was locally retrieved within BH02, and was also cohesive, described as sandy silt with some fine gravel, very stiff to hard, grey streaked dark red and saturated.

Two in-situ field vane tests undertaken within the Northland Allochthon completely weathered parent rock returned two UTPs, indicative of a very stiff to hard soil.

DCP blow counts of 10 to 25 blows per 100 mm penetration has been taken as indicative of Northland Allochthon Completely Weathered Parent Rock below the depth of hand augering.

Northland Allochthon Highly Weathered Parent Rock to depths >3.8 and >3.9 m bgl. The final 100 mm of the DCP probing at both BH01 and BH02 returned refusal with DCP blow counts of >25 blows per 100 mm penetration. DCP blow counts exceeding 25 blows per 100 mm penetration has been taken as indicative of Northland Allochthon Highly Weathered Parent Rock.

A summary of the above information is presented as Table 1 below.

Table 1: Summary of Ground Investigation

Hole ID	Hole Depth	Fill Depth	Depth to Completely Weathered Parent Rock	Depth to Highly Weathered Parent Rock	Groundwater ²
BH01	3.9 m	NE	3.3 m	3.8 m	NE
BH02	3.8 m	0.4 m	3.3 m	3.7 m	2.4 m

1. All depths recorded in m bgl unless stated.

2. Groundwater measurements taken on day of drilling.

3. NE – Not Encountered.

4.2.1 Groundwater

The ground investigation was undertaken during autumn and formed exploratory boreholes to depths greater than any potential excavation. Groundwater levels were monitored utilising a groundwater dip meter on the day of drilling, and groundwater was only encountered within BH01 at 2.4 m above the completely weathered parent rock strata, indicative of the groundwater perching above the underlying hard strata which is commonly encountered within the Northland Allochthon terrain.

Groundwater levels commonly fluctuate according to the season and rainfall events. As the site investigation occurred immediately after a significant rainfall event at the Tāheke region, groundwater levels may vary and be identified at lower levels than monitored during this ground investigation.

It is recommended that during foundation formation should any water ingress be noted that further advice is sought from Geologix which may require amendments to the recommendations of this report.

5 GEOTECHNICAL ASSESSMENT

Based on the results of the desktop appraisal, a site walkover survey, and the ground investigation, Geologix have undertaken a site-specific geotechnical assessment relevant to the proposed development concept.

5.1 Geotechnical Design Parameters

Geotechnical design parameters are presented in Table 2 below. They have been developed based on our ground investigation, the results of in-situ testing and experience with similar materials.

Table 2: Geotechnical Effective Stress Parameters

Geological Unit	Unit Weight, kN/m³	Effective Friction Angle, °	Effective Cohesion, kPa	Undrained shear strength, kPa
Northland Allochthon Residual Soil	18	14	6	95*
Completely Weathered Parent Rock	18	28	5	150
Highly Weathered Parent Rock	18	30	5	>200
* Adopting Bjerrum correction factor of 0.6 from the lowest vane shear strength.				

5.2 Site Subsoil Class

The site has been designated as Site Subsoil Class C - shallow soil sites according to the provisions of NZS1170.5:2004⁶.

5.3 Seismic Hazard

New Zealand Standard NZS1170.5:2004 Clause 2.1.4 specifies that to meet the requirements of the New Zealand Building Code, design of structures is to allow for two earthquake scenarios:

- 1. Ultimate Limit State (ULS) shall provide for... "avoidance of collapse of the structural system...or loss of support to parts... damage to non-structural systems necessary for emergency building evacuation that renders them inoperable".
- 2. Serviceability Limit State (SLS) are to avoid damage to... "the structure and nonstructural components that would prevent the structure from being used as originally intended without repair after the SLS earthquake...".

The seismic hazard in terms of Peak Ground Acceleration (PGA) has been assessed based on the NZGS Module 1⁷. Table 2 presents the return periods for earthquakes with ULS and SLS 'unweighted' PGAs and design earthquake loads for the corresponding magnitude. The PGAs were determined using building Importance Level (IL) 2, defined by NZS1170.5:2004. Reference should be made to the structural designer's assessment for the final determination of building importance level.

⁶ NZS1170.5:2004, Structural Design Actions Part 5: Earthquake Actions Clause 3.1.3.4.

⁷ New Zealand Geotechnical Society, Earthquake Geotechnical Engineering Practice, Module 1, November 2021, Appendix A, Table A1.

Table 3: Summary of Seismic Hazard Parameters

Limit State	Effective Magnitude	Return Period (years)	Unweighted PGA
ULS	6.5	500	0.19 g
SLS	5.8	25	0.03 g

5.4 Site Stability

At the time of writing, no obvious indications of major deep-seated instability were identified at the site, and the risk of such deep-seated instability developing as a result of the development proposal is low.

The gently to sloping natural terrain (approximately 2 to 6 °) is considered to lie within the natural equilibrium balance of the underlying Northland Allochthon residual soil. Additionally,

As the existing benched fill batter at the north of the Wharehui building lies closely the angle of friction of the underlaying Northland Allochthon Residual Soil, shallow instabilities could potentially occur around this batter. Therefore, it is recommended that the proposed development is located outside the zone of influence of the cut batter, taken as a line drawn up at 45 ° from the bottom of the batter to existing ground level.

5.5 Soil Expansivity

Clay soil may undergo appreciable volume change in response to changes in moisture content and be classed as expansive. The reactivity and the typical range of movement that can be expected from potentially expansive soils underlying any given building site depends on the amount of clay present, the clay mineral type, and the proportion, depth, and distribution of clay throughout the soil profile.

Clay soils typically have a high porosity and low permeability causing moisture changes to occur slowly and produce swelling upon wetting and shrinkage upon drying. Apart from seasonal moisture changes (wet winters and dry summers) other factors that can influence soil moisture content include:

- Influence of garden watering and site drainage.
- The presence of mature vegetation.
- Initial soil moisture conditions at the time of construction.

Based on our experience with Northland Allochthon residual soil, laboratory analysis within the strata on other projects in the local area and site observations, the shallow soils are conservatively expected to meet the requirements of a highly expansive or

Class H soil type. In accordance with AS2870:2011⁸ and New Zealand Building Code⁹, Class H or Highly Expansive soils typically have a soil stability index (I_{SS}) range of 3.8 to 6.5% and a 500-year design characteristic surface movement return (y_s) of 78 mm.

A quantification of the expansive soil class assumptions can be made by geotechnical laboratory analysis.

5.6 Liquefaction Potential

Liquefaction occurs when excess pore pressures are generated within loose, saturated, and generally cohesionless soils (typically sands and silty sands with <30 % fines content) during earthquake shaking. The resulting high pore pressures can cause the soils to undergo a partial to complete loss of strength. This can result in settlement and/ or horizontal movement (lateral spread) of the soil mass.

The Geologix ground investigation and laboratory analysis indicates the site to be predominantly underlain by fine-grained, non-dilative and elastic Northland Allochthon residual soil. Based on the materials strength and consistency, and our experience with these materials, there is no liquefaction potential/ risk in a design level earthquake event.

6 GEOTECHNICAL RECOMMENDATIONS

The following geotechnical recommendations have been developed based on the plans and details supplied to us at the time of writing. Amendments or revisions to the plans detailed in this report may require a review of the following recommendations.

6.1 Foundations

It is understood that the future ablution block will be located inside the zone of influence of the former septic tank which is located directly to the southwest of the existing ablution block.

It is recommended the former septic tank is excavated and replaced with suitably selected GAP hard fill with an engineering producer statement for compaction standard if shallow foundations are proposed. Alternatively, if the septic tank is outside the building footprint, piling through the tank's zone of influence will be required, subject to specific engineering design by a professional structural engineer.

⁸ AS2870, Residential Slabs and Footings, 2011.

⁹ New Zealand Building Code, Structure B1/AS1 (Amendment 19, November 2019), Clause 7.5.13.1.2.

6.1.1 Conventional Shallow Foundations

The development platform for both Wharehui building and future ablutions block (outside the zone of influence of the former septic tank) can be formed by a minor topsoil/ unsuitable material strip to expose the natural undisturbed Northland Allochthon residual soil. It is recommended that the non-engineered fill, encountered up to 0.4 m bgl in our ground investigation, any underlying soft spots (S_u <60 kPa) and any other unsuitable or deleterious materials (such as relic foundations, driveway hardstanding etc.) are sub-excavated and replaced with suitably selected and compacted materials such as GAP65 hard fill.

Based on the natural formation having an average undrained shear strength of 95kPa, given that a 300 mm layer of compacted GAP65 is placed on this formation to replace the non-engineered fill, either shallow standard raft or strip footing foundations can be adopted for the proposed Wharehui extension and future ablution block.

Such foundations may be designed by a professional structural engineer adopting an Ultimate Bearing Capacity of 300 kPa for a highly expansive soil type and a geotechnical reduction factor of 0.5. The use of deep piled foundations is not considered necessary.

6.1.2 Shallow Piles

Alternatively, shallow piles can be adopted for the proposed structures. Such foundations may be designed by a professional structural engineer adopting an Ultimate Bearing Capacity of 300 kPa for a highly expansive soil type and a geotechnical reduction factor of 0.5.

It is recommended that all piled foundations are taken down through the shallow non-engineered fill to found consistently into the underlying Northland Formation residual soils encountered at depths ranging from 0.1 m to 0.4 m bgl across the proposed building area.

If groundwater is encountered within the pile holes, tremie concrete pour methodology will most likely be required to displace groundwater and an allowance should be made for this by the Contractor.

Construction monitoring requirements of the above recommendations are detailed in Section 6.5 of this report.

6.2 Earthworks and Methodology

It is presumed from the proposed development concept that the proposed

earthworks will consist of a shallow topsoil/unsuitable material strip to form the proposed building platform. It is recommended that all permanent cuts are battered at 1V:3H or 18 degrees with heights less than 1.0 m to provide stability.

No earthwork concepts were provided to us at the time of writing. In addition, no permanent earthwork batters are considered necessary to form the building platform within the gently sloping area given that the building platform is located outside the zone of influence of the existing batter.

6.2.1 Temporary Works

To reduce the risk of temporary excavation instability, it is recommended that unsupported excavations have a maximum vertical height of 1.0 m. Temporary unsupported excavations exceeding this height (estimated to be 2 m) are expected during the removal of the septic tank and shall be battered at 1V:3H or 18 °. It is expected that the above temporary works can be undertaken within the site boundaries.

Temporary batters should be covered with polythene sheets secured to the surface with pins or batons to prevent saturation. All works within proximity to excavations should be undertaken in accordance with Occupational Health and Safety regulations. In addition, it is recommended that all earthworks are conducted in periods of fine weather within the typical October to April earthwork season. Consent conditions commonly prescribe working restrictions.

6.2.2 Fills

All fills within the development footprints scheduled as bearing strata should be retained by specifically engineered retaining walls or form certified engineered fill. It is recommended that the proposed fills are subject to a specific engineering specification including compaction standards and construction monitoring at regular lift intervals (maximum 0.5 m).

Any unsuitable and/or deleterious materials such as organic pockets, non-engineered fill, relic topsoil and/or concrete hard standing and locally weaker spots (< S_u 50 kPa) shall be cut to waste and not adopted for filling or placed within landscaped areas outside of the proposed dwelling footprint and shall be track rolled as a minimum.

For the replacement of the excavation of the septic tank, it is recommended that suitably selected GAP hard fill is used subject to an engineering specification including compaction standards (average Clegg Impact Value of 20) and construction monitoring at regular lift intervals (maximum 0.5 m).

6.3 Retaining Walls

No retaining walls are indicated on the initial development plan. However, if there is a change this assumption, retaining walls may be required to support the building platform.

It is recommended that all proposed retaining walls are designed by a professional engineer familiar with the findings and geotechnical parameters of this report. Timber pole cantilever retaining walls are considered the most feasible solution for the site.

Based on the results of the ground investigation and for a flat backslope above the retaining structure, earth pressure parameters for design are presented within Table 4 below.

Strata	At Rest Pressure Coefficient, Ko	Active Pressure Coefficient, K _A	Passive Pressure Coefficient, K _P
Northland Allochthon Residual Soil	0.758	0.554	2.016
Northland Allochthon Completely	0.521	0.321	5.172
Weathered Parent Rock	0.531		

Table 4: Earth Pressure Parameters

1. Adopts soil/ wall friction coefficient of 0.67 for timber according to NZBC B1/VM4 Table 2.

2. Considers a flat backslope only. Parameters to be modified by a design engineer for any sloping backfill/ ground with different angles.

It is recommended that a 100 mm diameter perforated drain coil and cohesionless backfill (minimum 300 mm wide) is installed behind all retaining walls to control any temporary hydrostatic pressures.

6.4 Driveways and Car Parking

If changes to the existing driveway is required, it is recommended that all unsuitable and deleterious materials such as topsoil, vegetation, shallow fill, and any existing foundations/ concrete hardstanding is removed from any new proposed driveway and car parking area prior to filling. By doing so, it is expected that the shallow natural Northland Allochthon residual soil will achieve a typical subgrade CBR value of 4 % or greater according to Austroads Standards.

For driveway and parking areas it is recommended that carriageways include a minimum total thickness of 250 mm, comprising a minimum 150 mm subbasecourse, typically AP65 or approved similar and minimum 100 mm basecourse, typically finer AP40 or approved similar.

6.5 Construction Monitoring

During site development works it is recommended that specific construction monitoring is undertaken by a professional engineer in accordance with the recommendations of this report and consent conditions. It is anticipated that a professional Geotechnical Engineer will be required to provide inspection of:

- Subgrade at the base of excavations within the footprint of buildings, driveways, and any other areas of structural or vehicle loading.
- Inspection of hard fill compaction where placed >300 mm in thickness and/ or within the footprint of imposed surcharges such as buildings, driveways and/ or septic tank replacement.
- Formation of the building platform to maintain geotechnical stability.
- Foundation inspection of proposed future structures to confirm embedment and bearing capacity according to specific structural design.

The above items are considered to be capable under CM2 level construction monitoring accompanied by appropriate Producer Statements. Monitoring should be undertaken or supervised by a chartered professional engineer.

7 LIMITATIONS

This report has been prepared for Taheke Marae Trustees as our Client. It may be relied upon by our Client and their appointed Consultants, Contractors and for the purpose of Consent as outlined by the specific objectives in this report. This report and associated recommendations, conclusions or intellectual property is not to be relied upon by any other party for any purpose unless agreed in writing by Geologix Consulting Engineers Ltd and our Client. In any case the reliance by any other party for any other purpose shall be at such parties' sole risk and no reliability is provided by Geologix Consulting Engineers Ltd.

The opinions and recommendations of this report are based on plans, specifications and reports provided to us at the time of writing, as referenced. Any changes, additions or amendments to the project scope and referenced documents may require an amendment to this report and Geologix Consulting Engineers should be consulted. Geologix Consulting Engineers Ltd reserve the right to review this report and accompanying plans.

The recommendations and opinions in this report are based on arisings extracted from exploratory boreholes at discrete locations and any available existing borehole records. The nature and continuity of subsurface conditions, interpretation of

ground condition and models away from these specific ground investigation locations are inferred. It must be appreciated that the actual conditions may vary based on the assumed ground model. Difference from the encountered ground conditions during subdivision construction may require an amendment to the recommendations of this report.

APPENDIX A

Drawings

APPENDIX B

Borehole Records

								HOLE NO.:						
consulting engineers									BH01					
CLIENT: Taheke Marae Trustees										JOB NO.:				
PROJECT: 3184 State H	lighway 12, Tāheke, Northland									07407		C	0294	
CO-ORDINATES: 1658520n	nE 6075479mN			F	EVATION	Grou	ind			FND	DATE: 3	1/05/2 1/05/2	2023	
CONTRACTOR: Internal	RIG: Hand Auger &	DCP		DRILL	ER: SBS	0100				LOGG	ED BY:	SBS	1020	
		ŝ	Ê						_	VANES	SHEAR S	STREM	NGTH	~
MATERIA		Б	Ĕ	EN	SCAL	(Blows	NEIRO s / 100mm		ĸ		(kPa))		TEF
(See Classification	& Symbology sneet for details)	SAM	Ē	LE0	2 4 6		10 12	., 1/ 16	19	9	vane: 34 B G	8	Values	WA
TOPSOIL comprising organic S	SILT, dark blackish brown, moist, low		<u> </u>	TS							T T	א <u>ר</u>		
plasticity.	/ wn_moist_low_plasticity_(Northland	1 [× × × ×										
Allochthon Residual Soil)				~ × × ×						:			142	
			0.4	××××									/1	
				× × ×									142	
Silty CLAY, very stiff, light brow	vn mottled white, moist, low plasticity.	1 [× × × ×									71	
(Northland Allochthon Residua	1 Soli)		0.8	× ×										
		-		××××						////			170 88	
		-	<u> </u>	× ×									00	
			 1_2	× × × ×									184	
Clayey SILT, very stiff, greyish (Northland Allochthon Residua	white and brown, moist, low plasticity.			<u>× × × × ×</u>									71	
(Normand Allochtion Residua			<u> </u>	× × × × × ×										
		-		× × × × × × × × × ×									142	
			<u> </u>	× × × × × × × × × × × × × × × × × × ×						<i>777</i>			74	ered
			– – — 1.8 —	× × × × × × × × × ×										ounte
				× × × × × × × × × × × × × × × × ×										ot Enc
		-	2.0	× × × × × × × × × ×						112			179 57	ter No
		-		× × × × × × × × ×										ndwa
				× × × × × × × × ×										Grou
			2.4	× × × × × × × × × × × ×						: 77771			156	
SILT very stiff grey moist fria	able (Northland Allochthon Residual	┥┝		× × × × × × ×									91	
Soil)			2.6	× ^ × × × × × × × × ×										
				\times \times $^{\times}$ \times \times \times						:	: :		198+	
				× ^ × × × × × × × × ×									-	
End Of Hole: 3.90m			3.0	×××××	ิ					////			184	
		-		-	5								115	
			<u> </u>	1	6									
						1	0							
				-			12	4						
			3.6					15						
									20					
									25 >>					
			4.0	-										
	PHOTO(S)			1		. : :	: :	REMA	RKS	. :	. :			
			- -	Hand auge	er completed a	at targe	et depth.							
	abere Morae		2.	Groundwa	with DCP to uter not encour	until re ntered	rusal at 3 at the tim	.9 m. ne of dri	lling.					
A BANK	THE REAL PROPERTY OF													
	A THEASE				v	VATE	R		-	INVES	STIGAT		ГҮРЕ	_
	PL N L SERVE				▼ Standir	ng Wat	er Level			۲	land Aug	er		
					> Out flow	w				٦	est Pit			
					✓- In flow									

Generated with CORE-GS by Geroc - Hand Auger - scala & vane bars - 22/06/2023 2:28:43 pm

	Geologix consulting engineers	HOLE NO.: BH02	HOLE NO.: BH02				
	CLIENT: Taheke Marae Trustees PROJECT: 3184 State Highway 12, Tāheke, Northland SITE LOCATION: South of State highway 12 CO-ORDINATES: 1658524mE, 6075464mN CONTRACTOR: Internal	DCP		E	STA LEVATION: Ground E .ER: SBS LC	JOB NO.: C0294 RT DATE: 31/05/2023 ND DATE: 31/05/2023 DGGED BY: SBS	
MATERIAL DESCRIPTION (See Classification & Symbology sheet for details)			DEPTH (m)	LEGEND	SCALA PENETROMETER (Blows / 100mm) 2 4 6 8 10 12 14 16 18 중	NE SHEAR STRENGTH (kPa) Vane: 3467 ୍ ତ୍ ଦ୍ ତ୍ ତ୍ Values	WATER
Ī	TOPSOIL comprising organic SILT, dark blackish brown, moist, low						
	FILL: SILT, very stiff, dark brown, moist, low plasticity.		0.2		222	22 170 99	
	Clayey SILT, very stiff, light orange brown mottled orange brown, moist, low plasticity. (Northland Allochthon Residual Soil)		0.6	× × × × × × × × × ×	72	170 111 170	
			1.0 1.2 1.4			22 85 UTP -	
	SILT, very stiff, light orange brown streaked white, moist, low plasticity. (Northland Allochthon Residual Soil)		1.6 1.8		722	2 170 91	
			2.0 2.2 		222	170 68 UTP	2023
	Sandy SILT with some fine gravel, very stiff, grey streaked dark red, saturated, low plasticity. (Northland Allochthon Completely Weathered Parent Rock) End Of Hole: 3.80m		2.4 2.6 			- UTP -	31/05/
			3.0	-			
			3.4	-	<u> </u>		
3 2:28:40 pm				-			
	PHOTO(S)				REMARKS	· · ·	
eroc - Hand Auger - scala & vane bars - 22	CO24a BWD27 31 AF 23		1 2 3	. Hand aug . Continued . Groundwa	er terminated at 2.6 m due to dense strata. I with DCP until refusal at 3.8 m. Iter encountered at 2.4 m at the time of drilling.		
Generated with CURE-GS by (WATER INV ▼ Standing Water Level ▼ ▷- Out flow ▼ <- In flow	VESTIGATION TYPE Hand Auger Test Pit	

STATEMENT OF DESIGN - PS1

Issued by: Dean Hoyle
To: Taheke Marae
Copy to be supplied to: Far North District Council
In Respect of: Econotreat Domestic Onsite Wastewater and Sewage System Design
At: 3182 State Highway 12, Taheke
Legal Description: Taheke B Block Maori Land Plan 441020

Waterflow NZ Ltd has been engaged by Taheke Marae to provide the technical design services and details in respect of the requirements of G13/VM4 and B2 Durability of the Building Code 2004, for an Onsite Wastewater and Sewage System for their building at the above location.

The Design has been carried out in accordance with Auckland Council TP-58 Guidelines and Clause B2, G13 and G14 of the Building Regulations 2004.

The proposed building work covered by this producer statement is described on the drawings titled: Taheke Marae Onsite Wastewater Design Report, and numbered 1-42 together with the specification, and other documents set out in the schedule attached to this statement.

On behalf of the Design Firm, and subject to:

(i) Site verification of the following design assumptions: correct installation of the system and drainage fields

(ii) All proprietary products meeting their performance specification requirements;

As an independent design professional covered by a current policy for Professional Indemnity Insurance, no less than \$200,000*, I **believe on reasonable grounds** the building, if constructed in accordance with the drawings, specifications, and other documents provided or listed in the attached schedule, will comply with the relevant provisions of the Building Code.

Signed by: Dean Hoyle – PS Author '3037' Auckland Council, NZQA Onsite Wastewater Training/Opus, BOINZ OWM, HBRC & FNDC Approved Designer

Date: 10.05.23

Signature:

Waterflow NZ Ltd 1160 State Highway 12 Maungaturoto 0520

Note: This statement shall only be relied upon by the Building Consent Authority named above. Liability under this statement accrues to the Design Firm only. The total maximum amount of damages payable arising from this statement and all other statements provided to the Building Consent Authority in relation to this building work, whether in contract, tort or otherwise (including negligence), is limited to the sum of \$200,000*.

Project location – Wastewater Treatment System for Taheke Marae at 3182 State Highway

As requested by the Taheke Marae Trustees, we (Waterflow NZ Ltd), are engaged to assess the stability and the soil condition for a suitable Onsite Wastewater Treatment System and Disposal field system for the **Taheke Marae at 3182 State Highway**.

We understand it is proposed to renovate / build a Marae used for Tangihanga events (dayovernight) max of 3 days fortnightly, potable water for use across the site is collected via rainwater tanks.

Is the site suitable for an on-site effluent treatment and disposal system?

Yes, the site is suitable for the discharge of the wastewater production as per AS/NZS 1547:2012 Table H4 of:

- Tangi day visitor 3-days every fortnight of 150ppl at 40l per person per day
- Tangi overnight visitor 3-days every fortnight of 50ppl, at 150L wastewater production per person per day
- Max Wastewater production per day is 12000L buffered to a daily discharge of 4500L/per day
- Disposal system to be PCDI dripper lines in Class 5 Soils, (as per AC TP-58, Table 5.1) with a DLR of 3.5mm taking in consideration the advanced secondary treatment level of the effluent

What are the disposal field requirements?

We recommend an EconoTreat VBB-C-3000-Triple including a 22500l Buffer tanks and a Grease Trap, an advanced secondary Treatment System with de-nitrification to PCDI dripper lines at a recommended loading rate of 3.5l/m2/day for silty clay-loamy soils. The primary irrigation field requires 1286m2 to be laid on level contours. And a minimum reserve field of 30% is recommended.

Is Discharge Consent required?

Yes, due to proposed activities onsite the Wastewater volume exceeds the Northland Regional Council and Far Norths Districts Council PA allowance of 2000l.

Other requirements

Council will require a Producer Statement – Construction Review (PS4) to satisfy Council requirements therefore the system / disposal field will need to be inspection by the Wastewater Designer to ensure compliance with Wastewater Design

Recommendation:

A meeting on site before installation with the installer and owner to confirm exact positioning of the system and disposal field in accordance with the design

2023

Waterflow NZ Ltd Certified Designer

Taheke Marae 3182 State Highway 12 Taheke Plan 441020

Reference Number: WF9063 Issued 10.05.23

Onsite Wastewater Design Report by Waterflow NZ Ltd - Copyright 2014

TABLE OF CONTENTS

PART A: CONTACT AND PROPERTY DETAILS	3
PART B: SITE ASSESSMENT - SURFACE EVALUATION	5
PART C: SITE ASSESSMENT - SOIL INVESTIGATION	7
PART D: DISCHARGE DETAILS - SEE HYDRAULIC LOADING TABLES	9
PART E: LAND DISPOSAL METHOD	10
PART F: PROPOSED WASTEWATER TREATMENT SYSTEM	11
PART G: OPERATION AND MAINTENANCE OF SYSTEM	11
PART H: SOIL LOG PROFILE	12
PART I: SITE IMAGES	13
DECLARATION	14
SITE LAYOUT PLAN:	15

Attachments

– PS1

- Certificate of Title
- Land Application System Schematics
- Pump Specification
- Electrical Diagram
- Assessment of Environmental Effects
- System & Installation Specifications
- Home Owners Care Guide

PART A: CONTACT AND PROPERTY DETAILS

A 1. Consultant / Evaluator

Name:	Dean Hoyle			
Company/Agency:	Vaterflow New Zealand Ltd			
Address:	1160 SH 12 Maungaturoto			
Phone:	09 431 0042			
Fax:	09 431 8845			
Email Address:	dean@waterflow.co.nz_			

A 2: Applicant Details

Applicant Name:	Taheke Marae
Company Name:	
Property Owner:	Taheke Marae
Owner Address:	3182 State Highway 12 , Taheke
Phone:	
Mobile:	
Email Address:	

A 3: Site Information

3182 State Highway 12 , Taheke						

A 4: Are there any previous existing discharge consents relating to this proposal or other waste discharge/disposal on the site?

Yes: No: x

If yes, give reference No's and description:

A 5: Dwelling(s) for which on-site wastewater service is to be provided

Status of dwelling(s) to be s	New	х	Existing		Multiple		
How many dwellings on the p	Taheke N	Marae					
Capacity of dwellings: Dwelling 1			Multiple groups using the Facilities - see Flow Calculation attached				
(or number of bedrooms) Dwelling		2					
Dwelling		3					
Other:							
Notes:							

PART B: SITE ASSESSMENT - SURFACE EVALUATION

B 1: Site Characteristics							
Performance of adjacent syste	ms:	(Unknov	Unknown)				
Estimated annual rainfall (mm):			1250 - 1500 (as per NIWA statistics)				
Seasonal variation (mm):		300-4001	mm				
Vegetation cover:	Native So	crub and Gras	ses				
Slope shape:		Linear Pl	anar				
Slope angle:		5-12	0				
Surface water drainage charac	teristics:	Broad ov	erland to boι	ındry			
Flooding potential?		Yes:		No:	x		
If Yes, specify relevant flood disposal area	levels rel :	ative to					
Site characteristics:	a comm pasture Highwa all othe	runal rui grass a y 12 to t r bound	ral property nd trees. Pr the North a aries.	v. Property is g operty bound nd residential	generally covered with laries are on State site and farmland on		

B 2: Slope Stability

Has a slope stability assessment been carried out on the site?

Yes:]	No:	x			
If no, why not?	-					
Low slope:	х	No sig	ns of instability:	x	Other:	

If yes, give brief details of report:

Details:	
Author:	
Company/Agency:	
Date of report:	

B 3: Site Geology

B 4: Slope Direction

What aspect does the proposed disposal system face?

North	x West		
North-West		South-West	
North-East		South-East	
East		South	

B 5: Site Clearances if applicable (also on site plan)

	Treatment Separation Distance (m)	Disposal Field Separation Distance (m)
Boundaries:	>1.5	>1.5
Surface Water:	>15	>15
Ground Water:	>1.2	>1.2
Stands of Trees / Shrubs:	n/a	n/a
Wells/Water Bores:	>20	>20
Embankments / Retaining Walls:	>3	>3
Buildings:	>3	>3
Other:		

B 6: Please identify any site constraints applicable for this property, and indicate how the design process is to deal with these.

Constraints	Explain how constraints are being dealt with	
1 Site constraints:	n/a	
(a)		
(b)		

PART C: SITE ASSESSMENT - SOIL INVESTIGATION

C 4 Sell							
		i minatioi		(No. of Text alter	
le	Test pit: Depth (mm):			No. of Test pits:			
Bor	e hole:	Х	Depth	(mm):	1200	No. of Bore holes	2
Other:							
C 2: Fill N	Aaterial						
Was fill n	naterial inte	rcepted o	during the	e subsoil ir	nvestigation?		
Yes:			No:	х			
If yes, ple	ease specify	the effec	t of the fi	ill on wast	ewater disposa	ıl:	
C 3: Pern	neability Te	sting					
Has cons	tant head P	ermeabili	ty Testing	g (Ksat) be	en carried out?	,	
Yes:			No:	x			
If yes, ple	ease indicat	e the deta	ails (test p	rocedure	number of tes	ts):	
			<u>, , ,</u>		, 	,	
Test repo	ort attached	?					
Yes:			No:	x			
		1	_				
C 4: SUR	FACE WATE		F DRAINS				
Are surfa	ice water in	terceptio	n/diversio	on drains r	equired?		
Yes:							
105		1		Λ			
C 5: DFP	TH OF SFAS	onai wa		F:			
Wint	Winter (m): >1.2						
Summer (m):			1.2	-			
was this							
Measured: ✓ no sign of ground water or mottling in bore hole:		ore holes					
Esti	Estimated:						
C 6: SHO		5					
Are there any potential short circuit paths?							
Yes:			No:	х			

If yes, how have these been addressed?

C 7: SOIL CATEGORY

Is topsoil present?

Yes: x No:

If yes, what is the topsoil depth & soil description?

250mm topsoil over silty clay-loam

Indicate the disposal field soil category (as per AC TP-58, Table 5.1)				
Category	Description	Drainage	(x)	
1	Gravel, coarse sand	Rapid draining		
2	Coarse to medium sand	Free draining		
3	Medium-fine & loamy sand	Good draining		
4	Sandy loam, loam & silt loam	Moderate draining		
5	Sandy clay-loam, clay loam & silty clay-loam	Moderate to slow draining	х	
6	Sandy clay, non-swelling clay & silty clay	Slow draining		
7	Swelling clay, grey clay & hardpan	Poorly or non-draining		

Reason for placing in stated category:

Result of bore hole/test pit sample	х
Profile from excavation	
Geotech report	
Other:	

C 8: SOIL STRUCTURE

Based on results of the in-situ soil profile investigation above (C7) please indicate the disposal (land application) field soil structure:

Massive	
Single grained	
Weak	
Moderate	х
Strong	

C 9: As necessary, provide qualifying notes on the relationship of Soil Category (C7) to Soil Structure (C8) and the effect this relationship will have on design loading rate selection:

PART D: DISCHARGE DETAILS - SEE HYDRAULIC LOADING TABLES

D 1: Water supply source for the property:

Rain water (roof collection)	х
Bore/well	
Public supply	

D 2: Are water reduction fixtures being used?

Yes:		No:	х
	4 - 1	 	

If 'yes' Please state:

Standard Fixtures include dual flush 11/5.5 or 6.3 litre toilet cisterns, and includes standard automatic washing machine, but a low water use dishwasher, no garbage grinder.

D 3: Daily volume of wastewater to be discharged:

No. of bedrooms/people:	1:	(As per Calculations attached)
	2:	
	3:	
Design occupance (people):	1:	(As per Calculations attached)
(as per AC TP-58, Table 6.1)	2:	
	3:	
		Black / Grey water
Per capita wastewater production (litres/person/day):	1:	(As per Calculations attached)
(as per ARC TP-58, Table 6.2)	2:	
	3:	
Total daily wastewater production (litres per day):		12000 L/day

(Buffered to 4500L/p/d)

D 4: Is daily wastewater discharge volume more than 2000 litres?

Yes: x No:

D 5: Gross lot area to discharge ratio:

Gross lot area:	5047 m²
Total daily wastewater production (litres/day):	12000 L
Lot area to discharge ratio:	1.12

D 6: Net Lot Area

Area of lot available for installation of the disposal (land application) field and reserve area:

Net lot area (m²):	4047 m²
Reserve area (m ²):	30%

PART E: LAND DISPOSAL METHOD

E 1: Indicate the proposed loading method:

	Black / Grey Water
Gravity Dose:	
Dosing Siphon:	
Pump:	Davy B42A-B

E 2: If a pump is being used please provide following information:

Total Des	sign Head (n	32		
Pump Chamber Volume (litres):			1600	
Emergency Storage Volume (litres):			9000	
Is a high water level alarm being installed in pump chambers?				
Yes:	х	No:		

E 3: Identify the type(s) of Land Disposal method proposed for this site:

	Black / Grey Water
P.C.D.I. Dripper Irrigation:	PCDI surface laid and mulched
L.P.E.D. System:	
Evapo-Transpiration Beds:	
Other:	
	(as per Schematics attached)

E 4: Identify the Loading Rate proposed for option selected in E3:

as per ARC TP-58, Table 9.2 & Table 10.3	Black / Grey Water
Loading Rate (litres/m²/day):	3.5
Disposal Area Basal (m²):	
Areal (m²):	1286

E 6: Details and dimensions of the disposal (land application) field:

Length (r	n):	42.9	No. Lines:	30	Hole Size:	N/A
Width (m	ı):	30.0	Spacing (m):	1.0	Hole Spacing:	N/A
Notes:	1286sqm of covering of	Surface laid PCD 100mm mulch. S	I dripline pinned at 1 ee schematic drawin	m centers and covere g attached.	ed with a minimu	ım

PART F: PROPOSED WASTEWATER TREATMENT SYSTEM

A Econotreat EconoTreat VBB-C-3000 Triple System with a 225000l buffer tank and a Grease Trap, fed through surface laid PCDI dripline is suitable for this site. The EconoTreat VBB-C-3000 System has enough capacity to accommodate 9000ltr per day, so will be well within its capacity. The land application system is designed to discharge a maximum volume of 4500ltrs per day and if this is exceeded it could cause failure resulting in environmental and public harm.

PART G: OPERATION AND MAINTENANCE OF SYSTEM

The operation of this complete system will be explained verbally to the owner by the Installer or Agent on Completion of Installation; also provided with Waterflow's Home Owner's Manual.

Waterflow NZ Ltd encourages the Home Owner to monitor and care for your Econotreat system yourself, with our backing and support, and by doing so you will learn how your system works and operates and how to keep it in top working order.

It is also recommended that a Maintenance Program contract is in place at all times to ensure this system is maintained at top performance at all times.

All on site wastewater systems require regular maintenance; in this case once annually is suffice and may be specified within the consent process by the Building Department of Far North District Council. This Maintenance will be recorded on hard copy and supplied to both the Owner and Far North District Council Compliance Officer if requested.

NOTE TO OWNER: All written records pertaining to the wastewater system should be retained in a safe place. When a change of ownership occurs, a full and complete history is able to be passed to the new owners.

Animals are to be physically excluded from the installed effluent field to avoid damage, and to reduce the risk of soil compaction in the vicinity of the bed.

Planting within this area is encouraged to assist with evapotranspiration by plants.

ON-SITE WASTEWATER DESIGN REPORT

PART H: SOIL LOG PROFILE

250mm topsoil over silty clay-loam Class 5, (as per AC TP-58, Table 5.1)

ON-SITE WASTEWATER DESIGN REPORT

PART I: SITE IMAGES

Land Application System: 1286sqm of surface laid PCDI dripline, 30 x 42.9m pinned at 1m centers and covered with a minimum of 100mm landscape mulch. To be laid near to contour and protected from stock and vehicular traffic. See schematic drawing attached.

DECLARATION

I, hereby certify that, to the best of my knowledge and belief, the information given in this application is true and complete.

Prepared By:						
Name:	Alexandra Sabath - Wastewater Design Technician					
Signature:						
Date:	10.05.23					

Reviewed By:						
Name:	Dean Hoyle – PS Author '3037' Auckland Council, NZQA Onsite Wastewater Training/Opus, BOINZ OWM, HBRC Approved Designer					
Signature:						
Date:	10.05.23					

NOTE: The Waterflow Systems are to be installed by a registered drainlayer to the designs supplied by Waterflow NZ Ltd. All work to comply with Regional Council Water and Soil Plans.

Comments/Summary:

The disposal field will need to be protected from traffic and animal grazing. Planting this area is recommended to increase Evapotranspiration.

Suitable plants for the disposal field can be found on our website <u>www.naturalflow.co.nz</u>

Waterflow Treatment systems to be installed by accredited installer unless other arrangements have been made by Waterflow NZ Ltd

For more information do not hesitate to contact the team at Waterflow NZ Ltd on 0800 628 356

Taheke Marae

Proposal is to design a treatment system that will catar for a maximum loading scenerio over a fortnight/month period,

Discharge per Day	System Recommendation	Buffer Required	Soil Class	DLR PCDI	DLR Beds
4500	Triple VBB-3000	22500	5	3.5	12
		-		1286	375

Event	Numbers	Flow Rates	Daily Flow	Frequency per Month	Duration
Day Visitors Tangi	150	40	6000	2	3
Overnight Tangi	50	120	6000	2	3
			0	0	0
			0		
			0		
			0		

			Tah	eke Marae Oc	cupancy/Flow	Calculations				
Day	Tangihanga Day	Tangihanga Night						Total Flow	Discharge L/p/day	Buffer L/p/day
Mon 1	0	0	0	0	0	0	0	0	4500	0
Tues 2	0	0	0	0	0	0	0	0	4500	0
Wed 3	0	0	0	0	0	0	0	0	4500	0
Thurs 4	0	0	0	0	0	0	0	0	4500	0
Fri 5	6000	6000	0	0	0	0	0	12000	4500	7500
Sat 6	6000	6000	0	0	0	0	0	12000	4500	15000
Sun 7	6000	6000	0	0	0	0	0	12000	4500	22500
Mon 8	0	0	0	0	0	0	0	0	4500	18000
Tues 9	0	0	0	0	0	0	0	0	4500	13500
Wed 10	0	0	0	0	0	0	0	0	4500	9000
Thurs 11	0	0	0	0	0	0	0	0	4500	4500
Fri 12	0	0	0	0	0	0	0	0	4500	0
Sat 13	0	0	0	0	0	0	0	0	4500	0
Sun 14	0	0	0	0	0	0	0	0	4500	0
Mon 15	0	0	0	0	0	0	0	0	4500	0
Tues 16	0	0	0	0	0	0	0	0	4500	0
Wed 17	0	0	0	0	0	0	0	0	4500	0
Thurs 18	0	0	0	0	0	0	0	0	4500	0
Fri 19	6000	6000	0	0	0	0	0	12000	4500	7500
Sat 20	6000	6000	0	0	0	0	0	12000	4500	15000
Sun 21	6000	6000	0	0	0	0	0	12000	4500	22500
Mon 22	0	0	0	0	0	0	0	0	4500	18000
Tues 23	0	0	0	0	0	0	0	0	4500	13500
Wed 24	0	0	0	0	0	0	0	0	4500	9000
Thurs 25	0	0	0	0	0	0	0	0	4500	4500
Fri 26	0	0	0	0	0	0	0	0	4500	0
Sat 27	0	0	0	0	0	0	0	0	4500	0
Sun 28	0	0	0	0	0	0	0	0	4500	0
	-				•			Max Buffer Re	q	22500
										22500 Litre Buffer

Volume required

PCDI SINGLE MANIFOLD LAYOUT

Flush Valve

ADI

Cylindrical PC (Pressure Compensated) dripper.

METZERPLAS

- Cylindrical PC dripper, with unique regulating labyrinth with self-flushing operation at the beginning and the end of each irrigation cycle.
- Triple inlet filter with filtering area 10 times larger than any other dripper.
- High clog resistance.
- Suitable for poor quality and effluent water.
- Large pressure compensation range up to 4.3 bars.
- Dripline diameter: 16, 18 and 20 mm.
- Dripper flow rate: 1.6, 2.2 and 3.5 l/h.
- *Rootguard*[®] configuration available for extra root protection in SDI (Subsurface Drip Irrigation).

ADI Dripline Technical Data:

Model	Inside Diameter (mm)	Wall Thickness (mm)	Min. Working Pressure (bars)	Max. Working Pressure (bars)	KD
	12.0	0.9	0.8	3.5	1.12
ADI 16	13.8	1.15	0.8	4.3	0.95
ADI 18	15.8	1.2	0.8	4.3	0.95
ADI 20	17.4	1.0	0.8	3.5	0.85
		1.25	0.8	4.3	0.6

ADI 16 mm. Maximum	lateral length (I.D.	13.8 mm, W.T 0.9 mm	, Inlet pressure 2.5 bars):
		/	

Nom. Flow Rate	Spacing Between Drippers (m)							
(1/1)	0.20	0.30	0.40	0.50	0.60	0.75	1.00	
1.6	86	122	156	188	218	260	324	
2.2	72	103	131	157	182	216	269	
3.5	51	73	94	113	131	156	195	

ADI 18 mm. Maximum lateral length (I.D. 15.8 mm, W.T 1.2 mm, Inlet pressure 2.5 bars):

Nom. Flow Rate	Spacing Between Drippers (m)							
(1/11)	0.20	0.30	0.40	0.50	0.60	0.75	1.00	
2.0	93	134	171	205	238	284	355	
3.5	65	92	118	142	166	198	247	

ADI 20 mm. Maximum Lateral length (I.D. 17.4 mm, W.T 1.0 mm, Inlet pressure 2.5 bars):

Nom. Flow Rate (I/h)	Spacing Between Drippers (m)						
	0.20	0.30	0.40	0.50	0.60	0.75	1.00
1.6	128	182	234	281	325	388	484
2.2	113	159	202	242	279	331	409
3.5	76	109	140	168	196	233	291

For additional tables and data please contact Metzerplas Technical Department or visit our website: www.metzerplas.com

Packaging Data

Madal	Roll Length (m)	Quantity Per Container (Rolls)			
widdei	Kon Length (III)	20	40	40 h	
ADI 16	400	150	300	350	
ADI 18	300	150	300	333	
ADI 20	300	133	266	300	

Assessment of Environmental Effects

Taheke Marae of 3182 State Highway 12 , Taheke Taheke B Block Maori Land Plan 441020

1.1 Description of Proposal

The owners of this site propose the construction of a new Marae.

1.2 Site Description

This site, located at 3182 State Highway 12, is a a communal rural property. Property is generally covered with pasture grass and trees. Property boundaries are on State Highway 12 to the North and residential site and farmland on all other boundaries.

1.3 Wastewater Volume

In calculating the wastewater flows we have allowed for a maximum occupancy, based on the proposed Marae (as per AS/NZS 1547:2012 Table J1). Total wastewater production is based on an allowance of (various) itres per person per day (as per AS/NZS 1547:2012 Table H3, Note 2), which is conservative given that water supply is roof collected rain water and standard water fixtures will be used throughout the house.

1.4 Wastewater Volume

The EconoTreat VBB-C-3000- Triple system that is proposed will treat the wastewater to a high standard prior to dispersal using a PCDI drip line, into a purpose-designed disposal field, where the removal of nutrient will continue, both in the receiving soils and by plant uptake.

The system will be capable of producing reductions in Biochemical Oxygen Demand, Total Suspended Solids, Nitrogen, and Coliforms to a standard that meets the requirements (see details below). The system will cater for the wastewater requirements of the private dwellings (domestic wastewater) and will not service any commercial or trade waste sources. Risk Minor to Nil.

1.5 Proposed Treatment System

The objective of the treatment system is to reduce and remove much of the contaminants from the wastewater prior to discharge into the receiving soil. This will improve the long-term performance of the disposal field as well as reducing the risk to the receiving environment. The system will consist of:

Septic Tank Module EconoTreat VBB-C-2200-Triple

1.6 Land Application System

The proposed irrigation system uses pressure-compensating dripper lines ensuring an even delivery of moisture over the entire irrigation field and a conservative DLR of 3.5mm. We propose the use of Metzerplas unibioline ADI16/2.2 @ 0.6m/c with the Dripline laid out at 1m centres. This Dripline will then be covered by 100mm landscape mulch. Densely planting this area will greatly enhance evapo-transpiration and be very beneficial especially in the wetter months of the year. This irrigation can be installed in conjunction with existing or proposed landscaping.

1.7 Surface & Ground Water

It is proposed to treat the water to a high standard prior to discharge and the proposed irrigation system will introduce the water into the topsoil horizon using PCDI irrigation. A low application rate of treated effluent into the topsoil will significantly reduce the likelihood of, any breakout or runoff or any risk of surface water contamination. With the ground water levels being >1.2m this conservative DLR also means the risk of ground water contamination is virtually nil. A majority of the undeveloped areas of this site are suitable for a PCDI disposal field when the necessary setbacks are observed. Risk Minor to Nil.

1.8 Air Quality

The proposed EconoTreat VBB-C-3000- Triple system will produce no noticeable odour when functioning correctly. Any odour will be contained within the tanks. The PCDI irrigation system will load the soil at a rate that should not cause ponding, spraying or aerosol of the effluent that could potentially cause odours. Risk Minor to Nil.

1.9 Visual Impact

The tanks are installed wholly below ground level with only the lids being visible. The lids will protrude approximately 100mm to prevent egress of storm water into the system. The disposal field will be located in a purpose designed mulched and intensively planted disposal area. Warning signs may be installed to indicate the presence of the disposal area, although probably not necessary in a domestic situation, also the area may be fenced to restrict access.

1.10 Environmental Risks

Risks are associated with this proposal are minor. The treatment system will be automated, and the Home Owner will be given a 'Home Owners Care Guide' which explains the necessary visual checks to ensure no issues arise with the system, specifically – solids build-up - high water level – discharge failure – filter blockage.

Peak flow into the system are not expected to be significant and the system includes a large emergency storage volume.

1.11 Maintenance Requirements

The maintenance requirement of this system is minimal, with the system fully automated. The system requires little input from the operator apart from the regular cleaning of the outlet filter between the treatment system and the Dripline field. All other maintenance interventions must be carried out by service persons familiar with the operation of the system and approved by the manufacturer. Maintenance may include checking of the dissolved oxygen levels, cleaning of effluent outlet filter, removal of excess sludge volume, checking of control panel function, etc....

The disposal field is quite possibly the most important and sensitive part of the treatment system and requires a reasonable amount of maintenance to keep it functioning well. Any leaking or damaged Dripline must be fixed quickly using the appropriate materials, the planting must be maintained, weeds removed and grass kept cut. The Dripline should be kept covered with a suitable bark, mulch, or topsoil.

Warning signs such as ponding, odours, and signs of excessive growth act as an indicator to possible problems. A disk filter s fitted to help prevent blockage of the drippers and to protect the Dripline. This filter will require cleaning during servicing of the system. The owners will be verbally informed at the commissioning of this system of all maintenance requirements and strongly advised to have a service contract in place prior to final sign off of the system installation.

-C-3	000 T	riple			
	9,000LPD				
	Aerated submerged fixed film media (open and closed type). Intermittent operation (fine and very large bubble combo)				
ume)	7 x Tanks (42,000L) 6,000L				
ıber	6,000L x 3 6,000L x 3 300L x 3 >9,000L				
	Nitto LA120 x 3 (130 W) or HB-300-31 Side Channel Blower (1.1 kW)				3
	Project specific, seprate spec to be included				
	<20 <20			F	-
	Air & High Water alarms (Audible & visual) 10A circuit breaker Aeration controlled by time clock				
			Sheet 1	of 3	
DATE: 17	/04/2019	SCALE: 1 / 35	REF:		
			1		

D

Econotreat VBB-C-3000 Treatment System

System Specifications & Installation Instructions

System Specification & Installation Instructions

New Zealand's Leaders in Advanced Secondary Treatment Systems

Compliance Requirements

All Econotreat Treatment Systems meet the requirements of the NZ Building Code G13-VM4.

Section 9 of AS/NZS 1546.1:2008 state that tanks constructed to these Standards will meet the requirements of the Code for Clauses B1 and B2, structure and durability.

Compliance with Section 9 of AS/NZS 1546.1:2008 and also Clauses G13.3.4 relating to on-site treatment and disposal systems and G14.3.1 and 14.3.2 relating to the control of foul water as an industrial waste.

The Treatment Process

Primary Chamber / Tank

Influent enters the chamber via the source whereby scum and solids capable of settling are separated from the raw influent. Primary treated effluent flows through a transfer port to the aeration tank. This primary tank will also act as a storage chamber for sludge returned from the Clarification Chamber.

Aeration Chamber

Water enters from the Primary Chamber. Air is introduced into this chamber via an air blower to create an environment for aerobic bacteria and other helpful organisms to consume the organic matter present. The aeration tank is designed in a manner to help prevent short circuiting of the wastewater to ensure extended aeration. Media is present in the tank to support the growth of bacteria.

Clarification Chamber

The Clarification chamber is essentially a quiescent zone where suspended particles/solids are settled out of the water. These particles are returned to the Primary chambers via a sludge return which aids in further biological reduction, denitrification and providing a constant food supply rich in microbes supporting the system through periods of limited flows.

Performance		
BOD (g/m ³)	<10	
TSS (g/m ³)	<10	
Total Nitrogen TN (g/m ³)	<15	
Ammonia Nitrogen NH4-N (g/m ³)	<5	
Total Phosphorous (g/m ³)	<5	

System Specification & Installation Instructions

New Zealand's Leaders in Advanced Secondary Treatment Systems

Tank Specifications

Tanks are made of 50mpa Fiber Reinforced Concrete, which is suitable material for wastewater treatment containment meeting all the requirements of Section 4.3.3 of AS/NZS 1547:2012. These tanks have an expected lifespan of 50 years.

Dual Chamber Septic Tank

6000L Nominal Capacity 2200mm Diameter 1960mm High ~4,100kg Aeration Tank 6000L Nominal Capacity 2200mm Diameter 1960mm High ~3,640kg

Installation Location and Certification

These tanks are not designed for vehicle loads and shall be located no closer than 2m to a driveway, road frontage or a building. If for any reason the tank is located where vehicle traffic may drive over the tank or approach closer than 2m, or where it may be trampled on by farm stock then the tank should be protected by a concrete slab designed to support these loads. Surface water must also be diverted from flowing into the installation.

Installation must be in accord with G13 of Building Code. Final producer statement certificate to be issued and held by the regulatory authority.

High Water Table Installations

All tanks have been engineered and designed for maximum strength, in accordance with the AS/NZS 1546.1:2008 and G13 Clauses B1 and B2 for structure and durability, to withstand any hydraulic pressures, both lateral and uplift, created by high water table conditions.

In high water table installations, it is important to fill the tanks with water. This removes the hydraulic uplift and simplifies the installation. In extremely high-water tables, a concrete foot can be added to the tank during manufacture. Waterflow must be made aware of this early on in view of supplying a tank that is fit for purpose.

Plumbing Pipes and Fittings

All internal plumbing is done with PVC pipes with appropriate connections according to AS/NZS 1260 and AS/NZS 4130.

Backfill and Bedding

Place and bed to NZBC G13/AS2, using compacted granular metal, in layers not exceeding 100mm.

If in doubt contact the experts on 0800 SEWAGE or sales@waterflow.co.nz

System Specification & Installation Instructions

New Zealand's Leaders in Advanced Secondary Treatment Systems

Electrical

Where a pump is required on a flat site electrical connection must be installed according to AS/NZS 3000 and the control and alarm system must be in a weatherproof housing located in a readily visible position.

Warranty

WATERFLOW NZ LTD warrants that the Econotreat System will be free from defects in material and workmanship for the following periods of time from the date of installation as set out in the following conditions:

- 1. Concrete Tank 15yrs
- 2. Roto-Molded Tanks 15yrs
- 3. Nitto Blower 2yrs
- 4. Irrigation Pumps 2yrs
- 5. Warranty of Operation covers the performance of the Econotreat System as connected to the effluent inflow for which they are designed, and has been installed to the criteria as set out in the relative installation instructions and procedures, and has an assigned Service/Maintenance contract in place with Waterflow NZ Ltd or it's appointed agent/s.

Warranty excludes defects due to:

A) Failure to use the system in accordance with owner's manual.

B) A force majeure event outside the reasonable control of WATERFLOW NZ LTD such as (but not limited to) earthquake, fire, flood, soil subsidence, ground water table variations or plumbing fault.

C) Modifications to surrounding landscape contour after installation

D) The actions of a third party

E) The system required to bear loads (either hydraulic or biological) greater than that for which it was designed

F) Any modifications or repairs undertaken without the consent of WATERFLOW NZ LTD

G) Failure, where applicable, to fence and plant disposal field.

1st June 2014 Dean Hoyle Managing Director

See our website: www.waterflow.co.nz

System Specification & Installation Instructions

Econotreat VBB-C-3000 Installation Instructions

The Econotreat system is to be installed or signed off by a registered Drain layer to the design specified by Waterflow NZ Ltd.

The following installation instructions and procedures followed correctly will ensure System performance is not compromised in any way.

- 1. Excavate two 2.5m x 2.5m level platforms at an appropriate depth to ensure adequate fall for inlet pipe from the source. This has to be installed on virgin ground. The two platforms are ideally on the same level and next to each other, either side-by-side or end-on-end.
- 2. Lay 100mm of bedding metal on platform and place the Septic and Aeration tanks next to each other. As close as practically possible to minimize the connection distance between the tanks.
- 3. Connect the two tanks with 100mm PVC. If the tanks are side-by-side the connection will need supporting. This is done by tying it back to the wire on the lids with a length of rope supplied. The rope can be found in the top of the treatment tank.

- 4. Next connect the sludge return. This is a 25mm PVC pipe that come out of the central riser on the treatment tank. This must be plumbed back to the second 100mm PVC at the start of the septic tank. It is important that this pipe is falling slightly or at minimum flat.
- 5. Trench from Dose Chamber outlet to disposal field and lay the 25mm alkathene feed line.
- 6. Take a minimum of 3 photos at this point to showing connections and back fill, to ensure correct installation for sign off.
- 7. Back fill around tanks. Using spoil from the excavation is fine, be aware that this will settle over time though.

Caution: System must be protected from excessive super imposed loads both lateral and top loads. E.g. loads from vehicular traffic. There needs to be at least 2m of clearance maintained around system.

If in doubt contact the experts on 0800 SEWAGE or sales@waterflow.co.nz

System Specification & Installation Instructions

Econotreat VBB-C-3000 Schematic Drawings

Copyright Waterflow New Zealand Limited 2021©

See our website: www.waterflow.co.nz

System Specification & Installation Instructions

Econotreat VBB-C-3000 Schematic Drawings

End on End Installation

If in doubt contact the experts on 0800 SEWAGE or sales@waterflow.co.nz

"Making it Easy"

Call us today to discuss your needs 0800 SEWAGE

Or for more information www.waterflow.co.nz

Head Office Waipapa Branch Waterflow NZ Ltd Waterflow NZ Ltd 1160 State Highway 12, 166 Waipapa Road, Maungaturoto Kerikeri P. 09 431 0042 P. 09 407 8323

> FF. 0800 SEWAGE E. <u>sales@waterflow.co.nz</u> www.waterflow.co.nz

Econotreat Aerated Wastewater Systems

Home Owners Guide

Home Owners Care Guide

Trusted Wastewater Management Solutions

Contents

To the Home Owner	3
Waterflow NZ Warranty	3
How it Works	4
Somicing	5
Servicing	6
Problem Solving	7
Caring for Your Wastewater System	g
Household Cleaning Chemicals	
Cleaning Substitutes	10
In a Nutshell	11
Plants Suitable for Onsite Wastewater Disposal Systems	12

See our website: www.waterflow.co.nz

Home Owners Care Guide

Trusted Wastewater Management Solutions

To the Home Owner

Thank you for choosing an Econotreat System to treat and care for your on-site sewage and wastewater.

Your Econotreat System is fully automatic in operation and requires little owner intervention to ensure years of service. It is useful that the owner/operator of the system understand some of the broad concepts of the system operation. This manual has been written to provide this simple explanation and to serve as a future reference so that you can ensure that the system is operating effectively at all times.

We would encourage you to monitor and care for your Econotreat system with our backing and support and by doing so you will learn how your system works and operates and how to keep it in top working order. Waterflow promises consistent results year after year.

Kind regards, The Waterflow Team

Warranty

WATERFLOW NZ LTD warrants that the Econotreat System will be free from defects in material and workmanship for the following periods of time from the date of installation as set out in the following conditions:

- 1. Concrete Tank 15yrs
- 2. Roto-Molded Tanks 15yrs
- 3. Nitto Blower 2yrs
- 4. Irrigation Pumps 2yrs
- 5. Warranty of Operation covers the performance of the NaturalFlow System as connected to the effluent inflow for which they are designed, and has been installed to the criteria as set out in the relative installation instructions and procedures, and has an assigned Service/Maintenance contract in place with Waterflow NZ Ltd or it's appointed agent/s.

Warranty excludes defects due to:

A) Failure to use the system in accordance with owner's manual.

B) A force majeure event outside the reasonable control of WATERFLOW NZ LTD such as (but not limited to) earthquake, fire, flood, soil subsidence, ground water table variations or plumbing fault.

C) Modifications to surrounding landscape contour after installation

D) The actions of a third party

E) The system required to bear loads (either hydraulic or biological) greater than that for which it was designed

F) Any modifications or repairs undertaken without the consent of WATERFLOW NZ LTD

G) Failure, where applicable, to fence and plant disposal field.

Home Owners Care Guide

Trusted Wastewater Management Solutions

How it Works

Primary Chamber / Tank

Influent enters the chamber via the source whereby scum and solids capable of settling are separated from the raw influent. Primary treated effluent flows through a transfer port to the aeration tank. This tank will also act as a storage chamber for sludge returned via the Clarification Chamber.

Aeration Chamber

Water enters via the Primary Chamber. Air is introduced into this chamber via an air blower to create an environment for aerobic bacteria and other helpful organisms to consume the organic matter present. The aeration tank is designed in a manner to help prevent short circuiting of the wastewater to ensure extended aeration. Media is also present in the tank to support the growth of bacteria.

Clarification Chamber

The Clarification chamber is essentially a quiescent zone where suspended particles/solids are settled out of the water. These particles are returned to the Primary chambers via a sludge return which aids in further biological reduction, denitrification and providing a constant food supply rich in microbes supporting the system through periods of limited flows.

See our website: www.waterflow.co.nz

Home Owners Care Guide

Trusted Wastewater Management Solutions

Servicing

Your Econotreat System requires annual service and maintenance inspections (this can vary depending on local council regulations). This will need to be done by our trained technicians. We will phone to arrange a suitable time to attend to your servicing needs.

A record sheet (in triplicate) will be completed by our technician at the time of service. One copy is for you the customer and available upon payment, another is sent off to Council and the third copy will be retained for our records.

Please call our office on the number listed at the back of this manual for the cost of servicing after the initial 12-month period.

- 1. A general inspection of tank area, irrigation and drainage.
- 2. Inspection of electrical equipment including timer, Low powered Blower, irrigation pump, warning lights and connections.
- 3. Inspection of Pump-out Chamber and septic tank, checking air lines, adjusting air supply (if necessary), operating de-sludging unit, resetting air control, operating submersible switch, checking bio-mass growth, checking sludge level.
- 4. Inspection of irrigation including lines, jets and outlets. Between 4 9 years the tank will need to be de-sludged (pumped out) as with any septic tank. We will notify you of this requirement, as the service technicians will be monitoring sludge depth annually.

Holiday Precautions

There are no precautions to take. Your Econotreat can be left to function automatically for 6 to 12 months. However, if you are likely to be away from home for more than six months you may like to contact our office, so we can make a routine check.

Responsibility

As the owner of the system, you are responsible for the correct operation and maintenance and to conform to Council's requirements.

Slowly remove irrigation cap (unscrew anti- clockwise). It is important to unscrew slowly to allow any built-up pressure to be relieved. Watch out for the O-ring inside the cap, be careful not to drop this in the tank.

Home Owners Care Guide

Trusted Wastewater Management Solutions

Problem Solving

To ensure the most effective operation of your Econotreat System you should familiarize yourself with the contents of this manual. The Econotreat has been designed to include additional safety margins and minor mishaps and normal household usage will not usually affect the operation of the system.

However, if the alarm sounds or strong odors persist Please call your service agent.

Area of Concern	Potential Cause	Remedial Action
Alarm sounds	Irrigation pump not working	Check water levels
	Air supply not working	Listen for the air compressor
	No power at the tank	Check power supply source
Water around tank	Irrigation pump not working	Check water levels
	Irrigation lines blocked or kinked	Check irrigation lines and clear sprinklers
Excessive foaming	Too much laundry detergent	Use recommended quantities
	Too many washes	Spread wash loads over different days
Persistent odors	Too much water usage	Add biologic starter pack
	Excessive chemicals in use	Install water saving devices
		System will recover
Irrigation system not working	Pump failure	Check water level
	Irrigation lines blocked	Clear irrigation lines
Water ponding on irrigation	Irrigation line blocked	Installation should comply with original
field	Excessive water use	approval
	Broken irrigation pipe	Install water saving devices
		Repair irrigation pipe

Do not flush baby wipes down toilets

Home Owners Care Guide

Trusted Wastewater Management Solutions

Caring for Your Wastewater System

Components of Your Complete Wastewater Septic System

A typical wastewater septic system has two main components: a Wastewater Treatment System and a Land Application System (or disposal field). This is simply treatment then discharge.

Efficient Water Use - 'it does make a difference'

Average indoor water use in the typical single-family home is approximately 180ltrs per person per day. The more water a household conserves, the less water enters the septic system. Efficient water use can improve the operation of the wastewater system and reduce any risk of disposal field overload.

High-efficiency toilets

Toilet use accounts for 25 to 30 percent of household water use.

Do you know how many liters of water your toilet uses to flush? Most older homes have toilets with 11+ liter reservoirs, while newer high-efficiency dual flush toilets use 6.3/5.5ltrs or down to 4.5/3ltrs of water per flush. N.B. Did you know leaky toilets can waste as much as 700ltrs each day.

Consider reducing the volume of water in the toilet tank with a volume displacer (fancy name for a brick, stone etc!) if you don't have a high-efficiency model or replacing your existing toilets with high efficiency models.

Check to make sure your toilet's reservoir isn't leaking into the bowl. Add five drops of liquid food coloring to the reservoir before bed. If the dye is in the bowl the next morning, the reservoir is leaking, and repairs are needed.

Water fixtures

A small drip from a faucet may add many liters of unnecessary water to your system every day. To see how much a leak adds to your water usage, place a cup under the drip for 10 minutes. Multiply the amount of water in the cup by 144 (the number of minutes in 24 hours, divided by 10). This is the total amount of clean water travelling to your septic system each day from that little leak.

Faucet aerators and high efficiency showerheads

Faucet aerators help reduce water use and the volume of water entering your septic system. Highefficiency showerheads also reduce water use.

Washing machines

By selecting the proper load size, you'll reduce wastewater. Washing small loads of laundry on the largeload cycle wastes precious water and energy. If you can't select load size, run only full loads of laundry. N.B. A new Energy Star washing machine uses 35 percent less energy and 50 percent less water than a standard model.

Home Owners Care Guide

Trusted Wastewater Management Solutions

Watch your drains!

What goes down the drain can have a major impact on how well your wastewater system works.

What shouldn't you flush down your toilet?

Dental floss, feminine hygiene products, diapers, cotton swabs, cigarette butts, cat litter, and other kitchen and bathroom items that can clog and potentially damage septic system components if they become trapped. Flushing household chemicals, gasoline, oil, pesticides, antifreeze, and paint can also stress or destroy the biological treatment taking place in the system or might contaminate surface or ground waters.

Care for your Land Application System

Your land application system is an important part of your wastewater system. Here are a few things you should do to maintain it:

- Flush driplines regularly every 3 months recommended
- Plant only recommended wetland plants over and near your wastewater system. Roots from nearby trees or shrubs might clog and damage the drain field
- Don't drive or park vehicles on any part of your wastewater system. Doing so can compact the soil
- in your drain field or damage the pipes, tank, or other septic system components
- Do not build any structures over it or seal it with concrete, asphalt etc.
- Keep roof drains, basement sump pump drains, and other rainwater or surface water drainage systems away from the drain field. Flooding the drain field with excessive water slows down or stops treatment processes and can cause plumbing fixtures to back up
- Trees with very aggressive roots, such as willows, should be kept well away from the disposal system, see page 11 for list of recommended planting
- A soggy drain field won't absorb and neutralize liquid waste. Plan landscaping, roof gutters and foundation drains so that excess water is diverted away from the Land Application System

Home Owners Care Guide

Trusted Wastewater Management Solutions

Household Cleaning Chemicals

Effects on Wastewater and Disposal System Receiving Environments

Use of many cleaning chemicals in facilities served by on-site disposal systems, can result in high concentrations of the constituents in those cleaning agents being discharged into the receiving soils. These chemicals and constituents can have a massive impact on the quality and condition of the receiving soils over time.

Many of the chemicals can disrupt soil structure and decrease hydraulic conductivity while others can act as bactericides, destroying the essential micro-organisms required to achieve the high level of biodegradation in the treatment and disposal systems.

The following matters need to be considered when using cleaning agents in a domestic situation:

- Laundry powders are often extremely high in sodium which will destroy the salt balance in the soils. Check the labels for low sodium and phosphorous contents.
- Wastewater flow from dishwashing machines can have an impact on wastewater treatment systems, in terms of the strong cleaning chemicals used, so check labels for low sodium products
- Highly corrosive cleaners (such as toilet and drain cleaners) that have precautionary labels warning users to minimize direct contact, are an indication that they can adversely affect the wastewater treatment system. Up to 1 cup of bactericides such as bleach can be sufficient to impact on all the microorganisms/bugs in a septic system.

Recommended Cleaning Brands:

earthuise caring for your world

If in doubt contact the experts on 0800 SEWAGE or sales@waterflow.co.nz

Home Owners Care Guide

Trusted Wastewater Management Solutions

Cleaning Substitutes

Substitutes for Household Cleaning Chemicals (Ref TP58)

Use of the following readily biodegradable substitutes for common potentially harmful household cleaning chemicals will reduce the stress on any wastewater system, significantly enhance the performance of the whole system and increase the life of the land application system, while reducing the potential effects of the receiving soils.

General Cleaners

Use soft soap cleaners and bio-degradable cleaners and those low in chlorine levels.

Ammonia-Based Cleaners

Instead sprinkle baking soda on a damp sponge.

Disinfectants

In preference use Borax (sold in most Bin Inn stores): ½ cup in 4-litres of water.

Drain De-Cloggers

Avoid using de-clogging chemicals. Instead use a plunger or metal snake or remove and clean trap.

Scouring Cleaners and Powders

Instead sprinkle baking soda on a damp sponge or add 4-Tbs baking soda to 1-Litre warm water. It's cheaper and won't scratch.

Toilet Cleaners

Sprinkle on baking soda, then scrub with toilet brush.

Laundry Detergent

Choose one with a zero-phosphate content and low in alkaline salts (in particular, a low sodium level) and no chlorine.

Oven Cleaners

Sprinkle salt on drips, then scrub. Use baking soda and scouring pads on older spills.

Home Owners Care Guide

Trusted Wastewater Management Solutions

In a Nutshell

Because your system is fully automatic there is no need for the owner to be concerned. However, there are some simple precautions to observe:

DO

- Avoid using strong acids, alkalis, oils and chemicals in your toilet, bathroom, laundry and kitchen (too much can kill off the working "bugs").
- Limit the use of water in the dwelling.
- Try to spread wash loads over different days.
- Try to avoid using the washing machine and shower at the same time.
- Front loader washing machines reduce water usage.
- If your system requires power supply make sure this remains on continuously, unless system is being serviced.
- Check faucets and toilets for leaks; make repairs if necessary.
- Use low flush toilets where possible.
- Use a 'displacer' to reduce the amount of water needed to flush older toilets.
- Use aerators on faucets and flow reducer nozzles on showers to help lower water consumption.
- Reduce water levels for small loads of laundry.
- Wait until the dishwasher is full to run it.
- Densely plant your field to maximize transpiration.
- Perform regular monthly visual checks of your system and field.
- Grass should be mowed or trimmed regularly to optimize growth and prevent the grass from becoming rank.
- Use signs, fences and/or plantings to prevent any vehicle or stock access.
- Keep records of all maintenance undertaken on the wastewater systems.
- Monitor and care for your Wastewater System as per instructions in the home owner's manual.

DON'T

- Switch off power unless servicing
- Use chlorine-based disinfectant & cleaning products in the toilets or kitchen sink (Cleaners high in chlorine, phosphorous or ammonia must not be used)
- Over use heavy cleaners that kill beneficial bacteria in the septic system
- Pour any toxic/strong chemicals (paint, oil, grease, paint thinners or pesticides) down any drains
- Flush down your toilet Dental floss, feminine hygiene products, diapers, cotton swabs, cigarette butts, cat litter, and other kitchen and bathroom items
- Discard any drugs down the sink or toilet
- Alter or add any part of your system without Waterflow NZ LTD's approval
- Never turn the system off, even when away on holidays.

Home Owners Care Guide

Trusted Wastewater Management Solutions

Plants Suitable for Onsite Wastewater Disposal Systems

Plantings that will soon have your field looking magnificent!

Below are some of the most common of native and other plant species that are tolerant or fond of moist conditions, such as those associated with wastewater disposal fields.

- Alocasia nigrescens (Black Taro)
- Apodasmia similis (Oioi)
- Arthropodium Matapouri Bay
- (Rengarenga Lily)
- Carex dispacea
- Carex dissita
- Carex maorica
- Carex secta

- Carex tenuiculmis
 - Carex virgata
- Cordyline australis (Cabbage Tree)
- Cordyline Midnight Star
- Leptospermum Burgundy Queen
- (Flowering Ti Tree)
- Lomandra Tanika
- Phomium Surfer

See our website: www.waterflow.co.nz

"Making it Easy"

Call us today to discuss your needs 0800 SEWAGE

Or for more information www.waterflow.co.nz

Head OfficeWaipapa BranchPO Box 24, 1160 State Highway 12,166 Waipapa Road,Maungaturoto 0547KerikeriP. 09 431 0042P. 09 407 8323E. sales@waterflow.co.nzE. kerry@waterflow.co.nz

www.waterflow.co.nz

Date:4/7/2022Client:Taheke MaraeAddress:Address:Phone:Address:

Quote: 0009063R2 JN#: WF9063 Attn: Paul White Email: paul.birch6097@gmail.com

Thank you for giving us the opportunity to supply this proposal for your wastewater management system. *Waterflow NZ LTD strives to reduce your environmental impact and maximise your return on investment.*

Name and Site Address	Marae State Highway 12
Legal Description	Lot ##, DP ####
Waste Water System	Econotreat EconoTreat VBB-C-3000 - Pumped discharge
Number Bedrooms	Taheke Marae
Water Supply (Tank/Reticulated)	Rain water (roof collection)
Total Design Flow (Itrs)	5142.857
Disposal Field Type	PCDI surface laid
Disposal Field Size (m²)	1714 - Split into 2 using an indexing valve.

This proposal covers the following:

- To supply onsite wastewater system design (TP58) for council consent
- Supply and installation of the wastewater system and disposal field
- Backfill may sink over time and require topping up (topping up not allowed for in this proposal)
- Decommission & suck out existing system
- Lay & connect 50mtrs of wastewater drains subject to final site measure
- Extra Provision Costs as set out below
- Supply and installation of 5200L grease trap

Wastewater System Investment

EconoTreat VBB-C-3000 Wastewater system:	\$	88,317.04
Buffer Tank:	\$	12,901.92
PCDI Disposal field kit:	\$	12,708.77
10% Trade Discount:	\$	-11,392.77
Installation & materials:	\$	36,550.00
Subtotal:	\$	140,584.96
Total Including GST	\$	161,672.70
Grease Trap Investment		
Wastewater system & disposal field kit:	\$	8,156.52
10% Trade discount:	\$	-815.65
Installation & materials:	\$	1,541.30
Subtotal:	\$	8,882.17
Total Including GST	\$	10,214.50
Drainage Connections		
Wastewater drainage:	\$_	4,000.00
Subtotal:	\$	4,000.00

Total Including GST	\$ 4,600.00
Provisional Cost	
Suck out & decommission existing septic system:	\$ 9,100.00
Clear Vegetation:	\$ 8,750.00
Supply and mulch field:	\$ 16,520.00
Supply and plant field:	\$ 31,260.00
Fencing of the disposal field:	\$ 6,587.00
Subtotal:	\$ 72,217.00
Total Including GST	\$ 83,049.55
Total Investment Including GST	\$ 259,536.76

This proposal does not include any of the following:

- Plumbing or sub-floor drains
- Electrical connections to system
- Removal of any excess spoil off site
- Consent Application or Council Consent fees

Terms and Conditions:

This proposal is subject to final wastewater design approval by the applicable regulatory authority.

On acceptance of this quote a \$1500 excl GST deposit is required to complete all documentation for consent. This is non-refundable if the project does not proceed.

Further payment terms are 50% upfront to prepare stock 30% prior to delivery and remainder at installation completion. If completion of project is delayed by circumstance's/events beyond our control further progress payments at our discretion may be required. Full payment is required before the issue of final documentation.

This quotation is based on site conditions, site plans provided, site access for machinery and underground conditions at the time of site assessment, any deviation from this may incur extra cost.

All underground services are to be clearly located by owner before excavation starts and any services damaged that are not located will not be the responsibility of the installer.

Boundaries must be clearly identifiable, and the location of buildings accurately marked out.

This quotation is valid for 60 days from the above date. Prices are valid for 6 months from the time of signing or accepting this proposal.

If you have any questions regarding this proposal or wish to discuss any aspects of it please feel free to contact us at any time.

We thank you once again for the opportunity to present this proposal, would value your favourable consideration and look forward to working through this with you.

Kind Regards

Initial:

Caleb Pirini Sales Representative

I, ______ hereby accept this proposal (#0009063R2) including the terms and conditions as above and Waterflow NZ Ltd Standard terms of trade (a copy of Waterflow NZ Ltd terms of trade will be supplied upon request).

Signature: _____ Date: _____

Initial:_____

Application for Resource Consent - Taheke Marae

Steven Sanson <steve@sansons.co.nz> To: environmentalplanning@nzta.govt.nz Sat, Oct 28, 2023 at 4:27 PM

Hello,

Please find in the link below an application for resource consent for Taheke Marae that is to be submitted to the Far North District Council and Northland Regional Council

https://boiplanning.sharepoint.com/:f:/s/BOIPlanning/EidAJMCeYfZGiG4u8ZtXIBEBIJ-jI8Sxz8zE372w3TaHlg?email=environmentalplanning%40nzta.govt.nz&e=9PKhBs

The proposal includes additional buildings for the Marae which are within the 10m setback of the Rural Production Zone. The breach is on the roadside boundary (SH12). Therefore, we are seeking NZTA feedback / approval on the proposal.

Appreciate your comments noting these will be formally lodged with each respective agency in due course.

Nga Mihi,

Steven Sanson (BPlan Hons) M: 021-160-6035 | steve@sansons.co.nz Managing Director | Consultant Planner www.sansons.co.nz

STORMWATER MANAGEMENT REPORT

TAHEKE MARAE, 3184 STATE HIGHWAY 12, TAHEKE

WATERFLOW LTD

C0299-3W-01 JULY 2023 REVISION 1

DOCUMENT MANAGEMENT

Document Title	Stormwater Management Report	
Site Reference	Taheke Marae, 3184 State Highway 12, Taheke	
Client	Waterflow Ltd	
Geologix Reference	C0299-3W-01	
Issue Date	4 July 2023	
Revision	01	
Prepared	Sander Derks Graduate Civil Engineer, Dip Eng	

File Reference

E:\EXT\LH\C0299-SW-01-R01.docx

REVISION HISTORY

Date	lssue	Prepared	Approved
June 2023	First Issue	SD	EC

TABLE OF CONTENTS

1	INTRODUCTION	4	
1.1	PROPOSAL	4	
2	SITE DESCRIPTION AND DESKTOP ASSESSMENT	4	
2.1	Flood Hazard Assessment	4	
2.2	Design Storm Event	5	
2.3	Existing Stormwater Management	5	
3	PROPOSED DEVELOPMENT	6	
3.1	Design Assumptions	6	
3.2	IMPERMEABLE SURFACES	6	
4	STORMWATER MANAGEMENT	8	
4.1	GUIDELINE DOCUMENTS	8	
4.2	STORMWATER MANAGEMENT DESIGN CONCEPT	8	
4.3	Device Standards	9	
4.4	STORMWATER ATTENUATION	10	
4.5	Discharge	10	
4.6	STORMWATER QUALITY	11	
4.7	Assessment Criteria	11	
5	LIMITATIONS	11	
APPI	ENDIX A	13	
APPI	ENDIX B	14	
APPI	APPENDIX C		
APPI	PPENDIX D		

TABLES

TABLE 1: SUMMARY OF FLOOD HAZARD POTENTIAL	5
TABLE 2: SUMMARY OF IMPERMEABLE SURFACES	7
TABLE 3: SUMMARY OF STORMWATER ATTENUATION	. 10
TABLE 4: SUMMARY OF CONCEPT DISPERSION DEVICES	. 11

1 INTRODUCTION

This Stormwater Management Report has been prepared by Geologix Consulting Engineers Ltd (Geologix) for Waterflow NZ Ltd as our Client in accordance with our standard short form agreement and general terms and conditions of engagement.

Our scope of works has been undertaken to assist with Resource and Building Consent application in relation to the proposed additions and amendments of an existing Marae development at 3184 State Highway 12, Taheke, the 'site'. This assessment provides means of managing stormwater runoff from proposed impervious surfaces with a less than minor effect on the environment as a result of the proposed activities outlined in Section 1.1.

1.1 Proposal

A proposed development plan was presented to Geologix at the time of writing, prepared by Arcline Architecture¹ and is reproduced within Appendix A as Drawing No. 400. It is understood the Client proposes to upgrade the existing buildings on the site with some minor additions, a new covered deck and entrance canopies and a future ablutions block under a stage 2 development. Amendments to the referenced plan may require an update to the recommendations of this report.

2 SITE DESCRIPTION AND DESKTOP ASSESSMENT

The site is legally described as Taheke B Block ML 441020 and occupies approximately 5,047m² to the south of State Highway 12 designated as Rural Production land according to the Far North District Plan zone maps, see Figure 1.

The site is roughly rectangular in shape with the State Highway 12 reserve delineating the northern boundary and with bush and scrub beyond the southern boundary. The adjacent properties present as similar sized parcels developed with a rural residential purpose. Topographically the site is gently sloping down from south to north.

2.1 Flood Hazard Assessment

Stormwater at the site is anticipated to move as sheet flow across the property to the north, intercepted by State Highway 12 and a roadside swale, ultimately moving downslope and into an adjacent river meandering around the site with the tidal CMA to the northwest. One minor overland flow path has been identified within the site boundaries, channelling surface water towards the road from the upper slopes to the south.

Road runoff stormwater will be intercepted by well-defined roadside swales. Available GIS data from the NRC² and FNDC³ systems indicate flood hazard either adjacent to but not

¹ Arcline Architecture, Sheet Ref. A-101, not dated.

² https://localmaps.nrc.govt.nz/LocalMapsGallery/

³ https://www.fndc.govt.nz/Our-Services/Online-maps/Far-North-Maps

within the site boundaries as a result of river and coastal flood inundation processes. A summary of flood potential and the downstream environment is presented as Table 1.

Table 1: Summary of Flood Hazard Potential

Event	Location	Prediction at Site	Downstream Prediction
River Flood, 10 % AEP River Flood, 2 %	-	Overtops channel banks to pastureland	Generally confined to river channel, overtopping banks to the south.
AEP*	_	surrounding the	
River Flood, 1 % AEP*	Northern boundary	channel up to 7m contour. Site elevation 8 m at lowest point.	Contained flooding over pasture to north and south of channels, contained within valley bottom, up to approximately the 7 m contour. SH12 acts as a minor barrier to flows to the north of the site. Flooding potential on adjacent properties downstream to the west.
Coastal Flood, current	-	No hazard mapped.	Nearest hazard reaches up drainage channels to c. 200 m downstream of site.
Coastal Flood, 2 % AEP	_	Generally contained in channel.	Some general sheet flow across low lying pastureland overtopping drainage channels.
Coastal Flood, 1 % AEP & Rapid Sea Level Rise	-	No hazard mapped.	Some general sheet flow across low lying pastureland overtopping drainage channels.
* Minor increase in	flood area o	ver less minor event(s).	

2.2 Design Storm Event

This assessment has been modelled to provide stormwater attenuation and management as follows:

Due to widespread flooding downstream and with downstream properties within this zone, stormwater attenuation and management will be designed to accommodate the 1 % AEP storm event peak flows with provision for climate change.

Attenuation modelling under the above scenarios avoids exacerbating downstream flooding and correctly sized discharge and management devices reduce scour and erosion at discharge locations which may otherwise result in concentrated discharge.

2.3 Existing Stormwater Management

Existing impervious surfaces and associated stormwater devices are recorded within the site boundaries. Stormwater from existing building roof areas is directed to five, 25,000 litre water tanks. Metal internal driveway stormwater runoff is diverted to surrounding areas. A recently new vehicle crossing at the northeastern site entrance has enhanced stormwater management with riprap on both sides. Roadside stormwater management includes a well-defined grassed swale drain and driveway culverts at the northern boundary, see Figure 1.

Figure 1: Site Location and Stormwater System

3 PROPOSED DEVELOPMENT

Proposed development plans presented to Geologix at the time of writing, indicate the proposed development of the site entailing extensions of the two current existing buildings and a future plan to remove and replace the ablution block on Taheke Marae. Based on the information presented to us some key design assumptions have been made below. Should the proposed development or the built environment differ from these assumptions, amendments to this report and design may be required.

3.1 Design Assumptions

- The existing consented development comprises of two large buildings, a separate toilet building, a metal driveway around the perimeter and some pathways between buildings.
- Proposed deck is indicated to be entirely under a veranda and canopy. As such the area is classed as impermeable.
- Stage 2 proposed future ablution block is incorporated in this stormwater management design concept. Taking in account the old existing building will be replaced by the new building design. The proposed roof area comprises 90 m².
- Extension of the Wharehui building, 31 m².
- New decking with canopy around the Wharekai building, 102 m².
- Three additional 25,000 I water tanks to total of five potable water supply tanks on site.

3.2 Impermeable Surfaces

A summary of existing and proposed impermeable surfaces is presented as Table 2.

Table 2: Summary of Impermeable Surfaces

Surface	Туре	Area	Difference
Existing Condition			
Wharehui Building	Impermeable	156 m ²	
Wharekai Building	Impermeable	407 m ²	
Concrete Paving	Impermeable	98 m ²	
Ablution Block	Impermeable	48 m ²	
Metal Driveway	Impermeable	533 m ²	
Grass/ lawn	Permeable	3805 m ²	
	Total	5047 m ²	
Total Impermeable		1242m ² / 24.6	%
Proposed Condition			
Wharehui Building	Impermeable	187 m ²	+31 m ²
Wharekai Building	Impermeable	407 m ²	+0 m ²
Concrete Paving	Impermeable	98 m ²	+0m ²
Ablution Block (Stage 2)	Impermeable	90 m ²	+42 m ²
Metal Driveway	Impermeable	533 m ²	+0 m ²
New Canopy	Impermeable	36 m ²	+36 m ²
New Deck & Veranda	Impermeable	102 m ²	+102 m ²
Grass/ lawn	Permeable	3594 m ²	- 211 m ²
	Total	5047 m ²	
Total Impermeable		1453 m ² / 28.8	%

FNDC District Plan Rule 8.6.5.1.3⁴ defines the Permitted Activity stormwater criteria as 15 % of the gross site area. The existing, consented development is calculated to cover 24.6 % of the gross site area with additions covered by this Consent of 211 m². Following the proposed development, impermeable areas will increase to 28.8 % of the gross site area, or a Discretionary Activity considering the site is designated as a Maori freehold title.

Mitigation of any environmental effect can be achieved though Low Impact Design principles. This will involve attenuation of additional impermeable surfaces. It is proposed to attenuate impermeable surface peak runoff to the Permitted Activity definition of 15 % of the gross site

⁴ District Plan Rule 8.6.5.1.3. The maximum proportion of the gross site area covered by buildings and other impermeable surfaces shall be 15%.

area, or 757 m² of impermeable surfaces. This will in-turn provide additional benefit to the downstream environment above the existing consented development condition.

Geologix were not presented with any existing Consents and associated conditions to consider any further requirements of the site.

4 STORMWATER MANAGEMENT

4.1 Guideline Documents

This stormwater management design has been prepared in general accordance with the following stormwater legislation and good practice guidelines.

- New Zealand Building Code, Clause E1: Surface Water.
- Auckland Regional Council, TP10.
- Auckland Council, GD01.
- Auckland Regional Council, TP108.
- FNDC Operative District Plan.
- NRC Proposed Regional Plan for Northland.
- 4.2 Stormwater Management Design Concept

This stormwater management design meets the requirements of the local and regional consent authorities by providing stormwater management up to and including the design storm event as below.

- The two main buildings and new toilet block, 684 m², the proposed covered decking and canopies, 138 m² will be routed to the stormwater tanks. These areas provide sufficient impermeable area to attenuated to the Permitted Activity condition within five 25,000litre roof water tanks, recently constructed and sited to the north west corner of the site. The tanks will also serve as potable water supply.
- Driveway area, 533 m². The existing driveway area does not require to be offset by roof attenuation. The parking area will shed as sheet flow to adjacent areas as the current condition.
- Discharge. To limit scour and erosion at the roof water tank outlet a specifically sized dispersion device has been designed in this report and will be situated downslope from the tanks towards the northern boundary of the site.

4.3 Device Standards

4.3.1 Fittings

No drainage fittings including chambers, manholes, frames, grates etc. are anticipated. If any fittings are proposed at ground level, these shall meet the requirements of AS3996 Class C (Heavy Duty) or EN1433 Class C for use in metalled or parking areas.

4.3.2 Driveway Area

Any additional future driveways shall be constructed with a minimum 2 % crossfall to surrounding areas to provide adequate drainage and to reduce flooding potential.

4.3.3 Stormwater Pipes

All proposed piping shall be minimum 80 mm uPVC with sealed joints. This design included a minimum 100 mm diameter sealed DN100 piping for tank inlets and outlets. The installation of stormwater pipes shall be per manufacturers guidelines to meet the requirements of NZBC Clause E1 Acceptable Solutions.

4.3.4 Stormwater Tank

At the time of writing, Geologix were informed that the proposal includes two existing, and a further three 25,000 litre Promax plastic above ground tank. The tanks shall be installed with the inlet pipe below roof gutter fittings upon a min. 100 mm thick bed of compacted sand or GAP hard fill. If topsoil depths are greater than 100 mm, all unsuitable materials shall be removed and classed as the base thickness. The compacted base shall extend a minimum of 250 mm outside the tank perimeter. The proposed tank specification and general installation instructions are presented as Appendix C of this report. The potable water outlet shall be installed a minimum of 150 mm above the base of the tank to provide a 'dead' storage volume to allow for sedimentation to occur in the tank.

4.3.5 Dispersion Pipe/ Trench

Roof water tank overflows shall be directed to a dispersion device contained within the site boundaries to avoid concentrated discharge and associated erosion. A typical dispersion pipe and trench detail is presented as Drawing No. 402 within Appendix A. The final device type shall be chosen by the Client as part of the application. An above ground dispersion pipe shall comprise a 100 mm diameter, DN100 PVC or PE pipe, drilled with 10 mm diameter holes at 200 mm c/c spacing. The pipe shall be laid flat on the surface, parallel to the ground contour to ensure uniform discharge. The pipe should be pegged to hold in place.

Alternatively, a below ground dispersion trench may be adopted. The trench shall be a minimum of 300 mm wide and 450 mm deep. The trench shall be lined with a woven geotextile fabric with general opening size of 0.06 to no more than 0.2 mm to minimise sedimentation in the trench. The DN100 stormwater pipe, drilled as above shall be laid upon a minimum 50 mm bed of cohesionless drainage metal such as scoria or approved similar in

the base of the trench. The same drainage medium shall also be used to backfill the trench. A 100 mm thick low permeability clay cap or topsoil horizon will seal the trench at ground level.

4.4 Stormwater Attenuation

Relevant design rainfall intensity and depths have been ascertained for the site location from the NIWA HIRDS meteorological model⁶. NIWA provides guidelines for modelling the effects of potential climate change effects of rainfall intensity increase by applying a potential change factor to historical data. This report has adopted potential change factors to account for a 2.1 °c climate change increase scenario. NIWA HIRDS and climate change data is presented in full within Appendix B.

This stormwater attenuation design has accounted for peak flow attenuation up to and including the 1 % AEP rainstorm event due to potential flooding at the site boundary and upon adjacent downstream properties. Attenuation design has been calculated adopting the Rational Method to attenuate to Permitted Activity conditions detailed in Table 2. Full calculations are presented as Appendix B, summarised as Table 3 and a schematic typical attenuation tank detail is presented within Appendix A as Drawing No. 401. The proposed attenuation design confirms there will be no increase in peak flows discharging to land up to and including the design (1 % AEP) storm event.

Condition	1 % AEP Peak Flow	Total Storage Volume Required	Design	
Pre-development	33.22 l/s		5x 25,000 litre retention/ detention tank with 29 mm orifice installed 0.38 m below	
Post-development	63.76 l/s*	18,325 litres	outflow and water supply outlet installed 150 mm above base of tank for sedimentation.	

Table 3: Summary of Stormwater Attenuation

4.5 Discharge

The direct discharge of water tank overflow in a concentrated manner can cause scour and erosion in addition to excessive saturation of shallow soils. It is recommended that overflow from rainwater detention tanks are conveyed in sealed DN100 type pipes to a dispersion pipe which maybe either pegged to the surface above ground or installed into a shallow below ground trench, see Section 4.3.5. Feeding pipes can be either buried or pinned to the surface as desired. Based on the proposed development. A dispersion pipe or trench design summary is presented as Table 4. Calculations to derive this are presented within Appendix B based on the NIWA HIRDS Depth-Duration data. A typical detail of the concept dispersion options are presented within Appendix A as Drawing No. 402.

⁶ NIWA High Intensity Rainfall Data System, https://hirds.niwa.co.nz.

Table 4: Summary of Concept Dispersion Devices

Concept Impervious	Design	Dispersion Pipe/	Min. No. of
Area to Tank	Velocity	Trench Min. Length	Drilled Holes
696 m2	2.73 m/s	11 m	56

4.6 Stormwater Quality

The proposed development is for a rural residential development. The key contaminant risks in this setting include:

- Sediments and minor contaminants washed from impervious surfaces, in particular from roof areas to the water tank.
- Leaf matter, grass and other organic debris.

Stormwater treatment requirements are minor to maintain good quality stormwater discharge. Stormwater quality will be provided by:

- Leaf guards on roof guttering and first flush devices on roof guttering and downpipes.
- Rainwater tank for potable use onsite only to be filled by roof runoff.
- Room for sedimentation within the base of the roof runoff water tank as dead storage volume.
- Stormwater runoff from impervious surfaces not discharged directly to existing watercourses or overland flow paths.

The risk of other contaminants being discharged out of the site boundaries (hydrocarbons, metals etc.) as a result of the proposed activities once stormwater has been processed through the above measures that will affect the downstream water quality is considered low.

4.7 Assessment Criteria

4.7.1 District Plan

The proposed activity has been assessed as a **Discretionary Activity**.

4.7.2 Regional Plan

The proposed activity is determined to meet the requirements of a **Permitted Activity** according to the provisions of Proposed Regional Plan Rule C.6.4.2.

5 LIMITATIONS

This report has been prepared for Waterflow NZ Ltd as our Client. It may be relied upon by our Client and their appointed Consultants, Contractors and for the purpose of Consent as outlined by the specific objectives in this report. This report and associated recommendations, conclusions or intellectual property is not to be relied upon by any other

party for any purpose unless agreed in writing by Geologix Consulting Engineers Ltd and our Client. In any case the reliance by any other party for any other purpose shall be at such parties' sole risk and no reliability is provided by Geologix Consulting Engineers Ltd.

The opinions and recommendations of this report are based on plans, specifications and reports provided to us at the time of writing, as referenced. Any changes, additions or amendments to the project scope and referenced documents may require an amendment to this report and Geologix Consulting Engineers should be consulted. Geologix Consulting Engineers Ltd reserve the right to review this report.

APPENDIX A

Drawings

	F0.472
TOTAL	258m²
VERANDA CANOPY	44m²
TIMBER DECKING VERANDA	93m²
FUTURE ABLUTION BLOCK	90m²
WHAREHUI BUILDING EXTENSION	31m²
PROPOSED IMPERMEABLE AREA	
TOTAL	1194m²
METAL DRIVEWAY	533m²
WHAREKAI BUILDING	407m ²
WHAREHUI BUILDING	156m²
CONCRETE PAVING	98m ²

1:50, A3

PROPOSED TANK SIDE VIEW

01&402 Typ. SW

GE	NERA	LNO	TES
1. TANK, F PER MA IN ACCC SPECIFI 2. ALL WC WITH N ACCEPT AND G 3. DO NOT 4. CONTR INSPECT MEET C	VIPING AND FI INUFACTURER DRDANCE WIT CALLY STATEE IRK TO BE UNI EW ZEALAND ABLE SOLUTIO JIDELINES. SCALE FROM ACTOR IS TO C FIONS AND M ONSENT CON	TTINGS TO B S RECOMME H NZBC E1, L OTHERWISE DERTAKEN IN BUILDING CO DNS, RELEVA THIS DRAWI PRGANISE AL DNITORING / DITIONS.	E INSTALLED AS NDATIONS AND JINLESS ACCORDANCE DDE E1 NT STANDARDS NG. L SET OUT, AS REQUIRED TO
0	CONS	ENT	16/05/2023
Revision	lss	ue	Date
	g	eolo	ogix
A	JCKLAND	NORTHLA	ND
Project Nan	he and Add	rocc	
3182 ST TAHEKE	TATE HI	GHWA	AY 12
3182 ST TAHEKE TAHEKE	TATE HI E E B BLO	GHWA CK ML	AY 12 441020
3182 ST TAHEKE TAHEKE Project C0299	TATE HI E B BLO	GHWA CK ML Drawn B SD	441020 y
3182 ST TAHEKE TAHEKE Project CO299 Client	TATE HI	GHWA CK ML Drawn B SD	441020 y
3182 ST TAHEKE TAHEKE Project CO299 Client WATERFL Sheet Title	ATE HI	GHWA CK ML Drawn B SD LTD	441020 y
3182 ST TAHEKE TAHEKE Project CO299 Client WATERFL Sheet Title TYPICAL	TATE HI	GHWA CK ML Drawn B SD LTD DETAI	441020 y
3182 ST TAHEKE TAHEKE Project CO299 Client WATERFL Sheet Title TYPICAL Sheet	ATE HI B BLO	GHWA CK ML Drawn B SD LTD DETAI	441020 y
	1. TANK, F PER MA IN ACCC SPECIFI 2. ALL WC WITH N ACCEPT AND GL 3. DO NOT 4. CONTR/ INSPECT MEET C	I. TANK, PIPING AND FIPER MANUFACTURER IN ACCORDANCE WIT SPECIFICALLY STATED ALL WORK TO BE UNI WITH NEW ZEALAND ACCEPTABLE SOLUTION AND GUIDELINES. DO NOT SCALE FROM CONTRACTOR IS TO COM INSPECTIONS AND MM MEET CONSENT CONI MEET CONSENT CONI Revision Issue AUCKLAND	TANK, PIPING AND FITTINGS TO B PER MANUFACTURERS RECOMME IN ACCORDANCE WITH NZBC E1, L SPECIFICALLY STATED OTHERWISE ALL WORK TO BE UNDERTAKEN IN WITH NEW ZEALAND BUILDING CO ACCEPTABLE SOLUTIONS, RELEVAL AND GUIDELINES. DO NOT SCALE FROM THIS DRAWN CONTRACTOR IS TO ORGANISE AL INSPECTIONS AND MONITORING A MEET CONSENT CONDITIONS. O CONSENT CONDITIONS DISCUSSION SUBJECTIONS SUBJECTIONS DISCUSSION SUBJECTIONS S

OPTION 1: DISPERSION VIA ABOVE GROUND PIPE

APPENDIX B

Calculations

Project Ref:	C0299	12. Tabaka	STORMV	VATER ATTEN	JATION TANK DE	SIGN		goologiy
Project Address: Prepared By:	SD	12, тапеке					G	consulting engineers
Date:	4 July 2023	REV 1	CONCEPT REN		UPIVIENT PLAN - 1 % A			
ATTENUATION DE 2.1 DEGREE CLIM	SIGN PROVIDED IN A ATE CHANGE. RESIDE	CCORDANCE WIT	H NEW ZEALAND BUIL 1ENT AREAS ARE BASE	DING CODE E1 FO	R THE RATIONALE ME JRVEY DATA.	THOD ACCOUNT	ING FOR THE EF	FECTS OF PREDICTED
RUNOFF COEFFIE	NTS DETERMINED FRO	OM WDC ENGINE	ERING STANDARDS 20	22 TABLE 4-4 FOR	TYPE C SOILS.			
PREDEVELOPMEN	NT SCENARIO			POST DEVELOP	MENT SCENARIO			
	AREA, A, m2	COEFFICIENT, C	DESCRIPTION		AREA, A, m2	COEFFICIENT, C	DESCRIPTION	ENT
0 O	0	0.96	PATHRESHULD		1453 0	0.96	PR DEVELOPIN	0
0	0	0		0 IMPERVIOUS	0	0		0
TOTAL	757	TYPE D	PR = PROPOSED	TOTAL	1453	TYPE D	† ! !	
PRE DEVELOPME 1 % AEP RAINFAL	NT RUNOFF L INTENSITY, 10 MIN, I	l, mm/hr	128.0	mm/hr	* CLIMATE CHANGE	FACTOR CALCULA	ATED IN ACCOR	DANCE WITH NIWA
CLIMATE CHANGE	FACTOR, 2.1 DEG, 10) MIN*	28.56	%	HIRDS RECOMMEND	ATIONS. HISTOR	IC RAINFALL IN	TENSITY, 10 MINUTES
1 % AEP RAINFAL	L INTENSITY, 10 MIN V	WITH CC	164.6	mm/hr	IS MULTIPLIED BY PC	TENTIAL CLIMAT	E CHANGE FAC	TORS. NIWA
1 % AEP PRE DEVI	ELOPMENT PEAK FLO	N	33.22	l/s	RECOMMENDS THAT	FOR 10 MINUTE	TO 1 HOUR AD	OPT THE 1 HR FACTOR.
INCREASED POST	DEVELOPMENT RUN	OFF, 1 % AEP WI	H CLIMATE CHANGE	PROJECTION OF 2	.1 DEGREES			
TIME, min	INTENSITY, mm/hr	CC FACTOR	CC INTENSITY, mm/h	r RUNOFF, Q, l/s	ALLOW. RUNOFF, I/s	Difference, l/s	Require	ed Storage, litres
10	128.00	1.2856	164.56	63.76	33.22	30.54	1 	18325
20	90.20	1.2856	115.96	44.93	33.22	11.71		14055
30	73.50	1.2856	94.49	36.61	33.22	3.39		6109
6U 120	51.50	1.2856	66.21 45.52	25.65 17.64	33.22 22.22	No Att. Req.		0
360	19 30	1.2751	23.96	9.28	33.22	No Att. Req.	 !	0
720	12.80	1.2121	15.51	6.01	33.22	No Att. Req.		0
1440	8.18	1.1806	9.66	3.74	33.22	No Att. Req.	•	0
2880	5.07	1.1575	5.87	2.27	33.22	No Att. Req.	 	0
4320	3.77	1.1449	4.32	1.67	33.22	No Att. Req.	!	0
	NOTE: ALL	OWABLE FLOW PI	ROVIDES FOR ANY OFF	SET ARISING FRO	M FLOWS NOT DIRECT	LY DISCHARGING	G TO TANK	
ATTENDATION IA	ANK DESIGN COTFOT							
			Concept s	izing to achieve 2	5,000 litre			
	Dead storage volume	min 150 mm				Overflow	-	
	recommended by GD	001, Dds						
					Ddet			
	Retention for potable	e use in			-			
	residential developm	ent			Hhy			
	Detention 1%	Litank			1	Outlet orifice, Do	orifice	
	AFP storm event Ddg	Htank						
	ALP SLOTTI EVENIL, Due	el						
							_	
						Water use outle	t	
				Dtaal	Dds			
				Dtank				
SPECIFICATION								
		10 225	m2	NOTES:				
TOTAL STORAGE	ank	18.325	m	Concent sizing t	o achieve 25 000 litre			
TANK DIAMETER.	Dtank	3.5	m	No. of Tanks	5			
, TANK AREA, Atan	k	48.11	m2	Area of four tar	ks hydraulically linked	I		
TANK MAX STORA	GE VOLUME, Vtank	125075	litres					
REQUIRED STORA	GE HEIGHT, Ddet	0.38	m	Below overflow				
DEAD STORAGE V	ULUME, Dds	0.15	m	GD01 recomme	nded minimum			
AVERAGE DISCHA	RGE RATE Opur	0.53	m3/s					
AVERAGE HYDRA	ULIC HEAD. Hhv	0.19						
AREA OF ORIFICE	AREA OF ORIFICE, Aorifice 6.61E-04 m2							
ORIFICE DIAMETE	R, Dorifice	29	mm	Note minimum	10 mm diameter			
VELOCITY AT ORI	ICE	2.73	m/s					

Project Ref:	C0299		STORMWATER DISPERSION PIPE/ TRENCH					
Project Address:	3184 State Highway 12, Taheke		geologix (
Prepared By:	SD		CONCEPT RENERVATION DEVELOPMENT PLAN					
Date:	4 July 2023	REV 1						
DESIGN BASE	D ON REFERENCED DEV	ELOPMENT PL	LANS TO PROVIDE A MINIMUM LENGTH OF ABOVE OR BELOW GROUND STORMWATER TANK					
		EOR THE DRO	DENERAL ACCORDANCE WITH TP108 GRAPHICAL METHOD BASED ON NIWA HIRDS DEPTH-					
DURATION D	ATA AND ACCOUNTING	FOR THE PRO	VISION OF CLIVIATE CHANGE.					
DESIGN STOR	M EVENT	1%	AEP EVENT					
ESTIMATE DE	SIGN RAINFALL DEPTH	, P24						
RAINFALL DEPTH 24 HR DURATION 1% 196 mm								
CLIMATE CHA	NGE FACTOR		2.1 DEGREE INCREASE,24 HR 1% 8.6 %					
RAINFALL DEI	PTH WITH CC, P24		212.9 mm					
ESTIMATE DE	TENTION VOLUME, TP	108 GRAPHIC	AL METHOD					
PEAK FLOW R	ATE, qp = q* x A x P24							
WHERE,	q*=	SPECIFIC PEAI	IK FLOW RATE (I/s)					
	P24=	24 HR DESIGN	N RAINFALL DEPTH (mm)					
	A=	CATCHMENT	AREA TO BE MITIGATED (m2)					
CURVE NUME	BER, CN (WEIGHTED)	84	See summary table, based on smalled lot size					
INITIAL ABSTR	RACTION, la	0.00	mm As TP108, adopt 0 mm impervious, 5 mm pervious					
MITIGATION	AREA, Am	1453	m2 Accounts for roof and NOT driveway as an offset					
SOIL STORAG	E, S	48.4						
RUNOFF INDE	EX, C*	0.69	mm					
TIME OF CON	ICENTRATION, tc	0.167	hrs					
SPECIFIC PEA	K FLOWRATE, q*	0.155	TP108, Figure 5.1, see next page.					
PEAK FLOWR	ATE, qp	47.94	l/s					
RUNOFF DEP	TH, Q24	173.4	mm					
RUNOFF VOL	UME, V24	252001	litres					
CONSTRUCT	ON OF DISPERSION AB	OVE GROUND	D PIPE OR PIPE WITHIN TRENCH					
	CE D	20	mm					
AREA OF ORI	FICE A	314 16	imm?					
	CITY Dv	2 73	m/s					
NUMBER OF	ORIFICES	56	No					
ORIFICE INTE	RVALS. C/C	200	mm					
DISPERSION F	PIPE LENGTH	11	m					

Project Ref:	C0299			STORMWATER ATTENHATION TANK DESIGN							
Project Address:	3184 State Highway	12, Taheke								eologix	
Prepared By:	SD			COL		nsulting engineers					
Date:	4 July 2023	REV 1									
CLIMATE CHANGE PROJECTIONS											
				. It is the the state							
REPRODUCED FROM NI	IWA HIRDS, <u>https:</u>	://niwa.co.nz/injo	ormation-service	<u>s/hirds/help</u>							
Duration/ARI	2 yr	5 yr	10 yr	20 yr	30 yr	40 yr	50 yr	60 yr	80 yr	100 yr	
1 hour	12.2	12.8	13.1	13.3	13.4	13.4	13.5	13.5	13.6	13.6	
2 hours	11.7	12.3	12.6	12.8	12.9	12.9	13	13	13.1	13.1	
6 hours	9.8	10.5	10.8	11.1	11.2	11.3	11.3	11.4	11.4	11.5	
12 hours	8.5	9.2	9.5	9.7	9.8	9.9	9.9	10	10	10.1	
24 hours	7.2	7.8	8.1	8.2	8.3	8.4	8.4	8.5	8.5	8.6	
48 hours	6.1	6.7	7	7.2	7.3	7.3	7.4	7.4	7.5	7.5	
72 hours	5.5	6.2	6.5	6.6	6.7	6.8	6.8	6.9	6.9	6.9	
96 hours	5.1	5.7	6	6.2	6.3	6.3	6.4	6.4	6.4	6.5	
120 hours	4.8	5.4	5.7	5.8	5.9	6	6	6	6.1	6.1	

HIRDS V4 Intensity-Duration-Frequency Results Sitename: 3182 State Highway 12	т	aheke								
Coordinate system: WGS84 Longitude: 173.6458										
Latitude: -35.4622 DDF Model	Pa	arameters:	c	d	e		f j	h h		
	Đ	alues: xample:	0.00265007 Duration (hrs)	0.4684 ARI (yrs	4841 5) x	-0.01039233	-0.00260328 y I	0.2521983 -4 Rainfall Rate (mm/hr)	3.01130125 3.020	108201
Painfall intensities (mm/bs) - Historical Data			24		100	3.17805383	4.600149227	8.183455354		
ARI	A	EP 0.633	10m	20m	36.4	0m	1h 20.5	th 6H	12h	24h 48h
±	2	0.033	57		39.8 51.6	32.3	20.5	14.1	8.27	5.41 3.44
1	10	0.1	85.9		60.3 69.1	48.9	34.1	23.6	12.7	8.33 5.32
	30	0.033	106		74.4	60.5 63.6	42.3	29.3	15.8	10.4 6.65
5	50	0.02	115		81.1	66	46.2	32	17.3	11.4 7.3
8 10	80 10	0.013	124		87.3 90.2	71.1	49.8	34.5 35.7	18.7	12.3 7.9
25 Intensity standard error (mm/br)	50	0.004	145		102	83.3	58.4	40.6	22.1	14.6 9.36
ARI 1.5	A 58	EP 0.633	10m 6.7	20m	3 4.3	0m 3	1h 2.2	th 61 1.5	12h 0.93	24h 48h 0.65 0.56
	2	0.5	7.3 10		4.6 6.6	3.3 4.8	2.4 3.3	1.7 2.3	1	0.71 0.62 0.98 0.84
1	10 20	0.1	13		8.6 11	6.3 8.3	4.2 5.4	2.9 3.8	1.7 2.2	1.2 1 1.5 1.2
3	30 40	0.033	18 20		13 15	9.7 11	6.3 7	4.4 4.9	2.5 2.8	1.7 1.3 1.9 1.4
S	50 50	0.02	22		16 17	12 13	7.6 8.2	5.3 5.7	3 3.2	2.1 1.5 2.2 1.6
a 10	80 00	0.013	26		19 21	14 15	9.1 9.9	6.3 6.9	3.5 3.8	2.5 1.7 2.7 1.8
25 Rainfall intensities (mm/hr) :: RCP2.6 for the period 2031-2050	50	0.004	37		29	21	14	9.6	5.3	3.7 2.2
ARI 1.5	A 58	EP 0.633	10m 55.8	20m	3 38.9	0m 31.6	1h 21.9	th 6h 15	, 12h 7.95	24h 48h 5.16 3.26
	2 5	0.5 0.2	61.1 79.2		42.7 55.5	34.6 45	24.1 31.4	16.5 21.6	8.74 11.5	5.68 3.59 7.47 4.72
3	10 20	0.1	92.6 106		64.9 74.5	52.7 60.6	36.8 42.3	25.3 29.2	13.5 15.6	8.8 5.58 10.2 6.45
3	30 40	0.033	114 120		80.3 84.3	65.3 68.6	45.6 48	31.5 33.1	16.8 17.7	11 6.98 11.6 7.36
s e	50 50	0.02	124 128		87.5 90.1	71.2	49.8 51.3	34.4 35.5	18.4	12.1 7.66
8 10	50 00	0.013	134 138		94.3 97.5	76.8	53.8 55.6	37.2 38.5	19.9 20.7	13 8.29 13.5 8.6
25 Rainfall intensities (mm/hr) :: RCP2.6 for the period 2081-2100 API		0.004	156 10m	20~	110	89.9	63.1	43.7	23.5	15.4 9.84
1.5	A 58 2	0.633	55.8	zum	38.9 42.7	31.6	21.9	61 15	7.95	2411 48h 5.16 3.26 5.68 2.50
	5	0.5	61.1 79.2		→2./ 55.5 64.0	34.6 45	24.1 31.4	16.5	0.74 11.5	7.47 4.72
1	20	0.05	106		74.5	52.7 60.6	42.3	25.3 29.2 21.5	15.6	10.2 6.45
	40	0.033	114		84.3 87.5	68.6 71.2	45.6	33.1	17.7	11.6 7.36
	50 50 80	0.017	124		90.1 94 3	73.4	43.8 51.3 53.8	35.5	19	12.4 7.91
10	00	0.01	138		97.5	79.4	55.6	38.5	20.7	13.5 8.6
Rainfall intensities (mm/hr) :: RCP4.5 for the period 2031-2050 ARI	A	FP	10m	20m	110	0m	1h ::	 th 6t	125.5 12h	24h 48h
1.5	58	0.633	56.7	2011	39.6 43.4	32.1	22.3	15.3 16.8	8.05	5.22 3.29
	5	0.2	80.7		56.5	45.8	31.9 37.4	21.9	11.6	7.57 4.78
2	20	0.05	108 116		75.9 81.8	61.7	43.1 46.5	29.7	15.8 17.1	10.3 6.53 11.2 7.06
4	40 50	0.025	122		85.9 89.2	69.9 72.6	48.9 50.8	33.7 35.1	18 18.7	11.8 7.45 12.2 7.75
e	50 80	0.017	131		91.8 96.1	74.7	52.3 54.8	36.1 37.8	19.3	12.6 8
10	00 50	0.01	141		99.3 112	80.9 91.6	56.7 64.3	39.2 44.5	21 23.9	13.7 8.7 15.7 9.96
Rainfall intensities (mm/hr) :: RCP4.5 for the period 2081-2100 ARI	A	EP	10m	20m	3	Om	1h :	th 6h	12h	24h 48h
1.5	58 2	0.633	59.6 65.4		41.6 45.7	33.7 37.1	23.4 25.8	16 17.6	8.39 9.25	5.4 3.4 5.97 3.74
1	5 10	0.2	85.1 99.6		59.6 69.8	48.4 56.7	33.7 39.5	23.1 27.2	12.2 14.3	7.87 4.94 9.29 5.84
2	20 30	0.05 0.033	114 123		80.2 86.4	65.2 70.3	45.5 49.1	31.3 33.8	16.6 17.9	10.8 6.76 11.6 7.32
4	40 50	0.025	129 134		90.8 94.3	73.9 76.7	51.7 53.7	35.6 37	18.9 19.7	12.3 7.73 12.8 8.04
e	50 80	0.017	138 144		97.1 102	79 82.8	55.3 58	38.1 40	20.3 21.3	13.2 8.3 13.8 8.71
10	00 50	0.01	149 169		105 119	85.6 97	59.9 68	41.4 47	22 25.1	14.3 9.04 16.4 10.3
Rainfall intensities (mm/hr) :: RCP6.0 for the period 2031-2050 ARI	A	EP	10m	20m	3	0m	1h :	th 6h	12h	24h 48h
1.5	2	0.633	61.7		39.3 43.1	31.9	22.1 24.3	15.2	8.82	5.19 3.28
1	5	0.2	80.1 93.6		55.6	45.5 53.3	31.7	21.8 25.6	11.6 13.6	7.53 4.76 8.87 5.61
2	30	0.033	107		73.4 81.2 85.2	66	42.8	29.5	17	10.3 0.49
4 5	50	0.025	121		88.5 91 ?	72 74 0	48.5 50.4 51.0	33.5 34.8	18.6	12.2 7.71
8	80 10	0.013	135		95.4	77.6	54.4	37.6	20.1	13.2 8.35
Rainfall intensities (mm/hr) :: RCP6.0 for the period 2081-2100	50	0.004	158		112	91	63.8	44.2	23.8	15.6 9.91
ARI 1.5	A 58	EP 0.633	10m 62.2	20m	3 43.5	0m 35.2	1h 24.5	th 61 16.7	ı 12h 8.68	24h 48h 5.57 3.49
	2 5	0.5	68.3 89.1		47.8 62.4	38.7 50.6	26.9 35.2	18.4 24.1	9.59 12.6	6.16 3.85 8.15 5.09
1	10 20	0.1	104 120		73.1 84.1	59.4 68.3	41.4 47.7	28.4 32.8	14.9 17.3	9.62 6.02 11.1 6.97
3	30 40	0.033	129 135		90.6 95.2	73.7 77.4	51.5 54.2	35.4 37.3	18.7 19.7	12.1 7.55 12.7 7.97
5	50 50	0.02	141		98.9 102	80.5 82.9	56.3 58	38.8 39.9	20.5 21.1	13.2 8.29 13.7 8.57
8 10	80 00	0.013	152 157		107 110	86.8 89.8	60.8 62.9	41.9 43.3	22.1 23	14.3 8.99 14.9 9.33
25 Rainfall intensities (mm/hr) :: RCP8.5 for the period 2031-2050	50	0.004	177		125	102	71.4	49.3	26.2	17 10.7
ARI 1.5	A 58	EP 0.633	10m 57.4	20m	3 40.1	0m 32.5	1h 22.6	th 6h 15.4	12h 8.13	24h 48h 5.26 3.32
	5	0.5	62.9 81.7		44 57.2	35.6 46.4	24.8 32.3	17 22.2	8.95	5.8 3.65 7.64 4.82
1	10 20	0.1	95.5 110		67 76.9	54.4 62.5	37.9 43.7	26.1 30.1	13.8	9.01 5.69 10.4 6.58
3	40	0.033	118 124		62.8 87.1	67.4 70.8	47.1 49.5	32.5 34.2	17.3 18.2	11.3 7.12 11.9 7.51
5	50 50	0.02	129		93.1	73.5	51.5	35.5 36.6	18.9	12.4 /.82
8 10 27	BO DO	0.013	138		97.4	79.3	55.5 57.4	38.3 39.7	20.5	13.4 8.47 13.9 8.78
25 Rainfall intensities (mm/hr) :: RCP8.5 for the period 2081-2100 ARI	ںد بر	0.004	162 10m	20m	114	92.9	65.2	45.1	24.2	10.8 1U
1.5	A 58 2	0.633	68.1	zum	3 47.6 52 /	38.5	26.8	61 18.2 20.1	9.36	2411 48h 5.94 3.7 6.6 4.09
	5	0.5	/5 98 115		68.6 80 F	42.4 55.7 65 5	29.5 38.8 45.7	26.5	13.7	8.77 5.43
2	20	0.05	132		92.8	75.4	52.7	36.1	18.8	12 7.45
	40	0.025	142		105 109	85.5 88 9	59.8 62.2	41 47 7	21.5	13.8 8.53 14.3 8.88
	50 80	0.017	160		113 118	91.6	64.1 67 2	44	23.1	14.8 9.18
10	00 50	0.01	173		122 138	99.3 112	69.5 78.9	47.8	25.1 28.6	16.1 10 18.4 11.4

72h 96h 120h 193 142 144 0.952 121 157 125 105 2.78 2.06 155 138 3.28 2.43 195 1.68 3.8 2.62 2.26 1.89 4.11 305 2.45 2.05 4.34 3.22 2.26 1.89 4.34 3.22 2.26 2.17 4.52 3.35 2.69 2.25 4.65 3.46 2.78 2.33 4.89 3.63 2.92 2.45 5.81 4.32 3.47 2.91

 5.81
 4.32
 3.47
 2.91

 72h
 96h
 120h

 0.35
 0.26
 0.21
 0.17

 0.35
 0.26
 0.21
 0.17

 0.36
 0.26
 0.32
 0.19

 0.52
 0.39
 0.31
 0.26

 0.62
 0.47
 0.38
 0.31

 0.74
 0.55
 0.44
 0.37

 0.81
 0.61
 0.49
 0.4

 0.87
 0.65
 0.52
 0.40

 0.92
 0.69
 0.55
 0.45

 0.92
 0.69
 0.72
 0.57
 0.47

 1
 0.77
 0.61
 0.55
 1.1
 0.81
 0.64
 0.53

 1.3
 1
 0.79
 0.55
 0.55
 0.56
 0.56

 6.11
 4.52
 3.62
 3.03

 72
 96h
 120h

 2.11
 1.54
 1.12
 1.02

 2.33
 1.71
 1.36
 1.13

 3.09
 2.27
 1.8
 1.13

 3.05
 2.69
 1.4
 1.78

 4.25
 3.12
 2.49
 2.07

 4.6
 3.38
 2.7
 2.25

 5.66
 3.58
 2.85
 2.38

 5.06
 3.72
 2.75
 4.86

 5.20
 3.85
 3.28
 2.28

 5.64
 4.04
 3.24
 2.79

 6.52
 4.81
 3.34
 2.79

 6.52
 4.81
 3.84
 3.2

 72h
 96h
 120h

 202
 1.48
 1.80
 989

 2.23
 1.64
 1.31
 109

 924
 2.17
 1.73
 1.45

 3.43
 2.57
 2.05
 1.71

 4.03
 9.28
 2.38
 1.99

 3.73
 2.32
 2.82
 2.15

 4.61
 3.41
 2.72
 2.28

 4.8
 3.55
 2.84
 2.37

 5.2
 3.65
 3.07
 2.57

 5.4
 3.99
 3.19
 2.67

 6.18
 4.57
 3.66
 3.09

HIRDS V4 Depth-Duration-Frequency Results Sitename: 3182 State Highway 12 Coordinate system: WGS84 Longitude: 73.6458 Latitude: -35.6622 DFE Model	Tah	eke	đ		f	a	h							
DDF WODE	Valu Exar	es: 0.0 nple: Durati	0265007 0.4 on (hrs) ARI (۱ 24	684841 -0.0 vrs) x 100 3.1	1039233 -0. y 7805383 4.6	6 00260328 Rainf 00149227	0.2521983 -0.01 all Depth (mm) 196.4029285	130125 3.02	2008201					
Rainfall depths (mm) :: Historical Data ARI	AEP	10m	20m	30m	1h	2h	6h	12h	241	n 48h	1 72h	n 96h	120	Ih
Depth standard error (mm) :: Historical Data	1.58 2 5 10 20 30 40 50 60 80 100 250	0.633 0.5 0.2 0.1 0.05 0.033 0.025 0.02 0.017 0.013 0.01 0.001	8.69 9.5 12.3 14.3 16.4 17.6 18.5 19.2 19.8 20.7 21.4 24.1	12.1 13.3 17.2 20.1 23 24.8 26 27 27.8 29.1 30.1 34.1	14.7 16.1 20.9 24.5 28.1 30.2 31.8 33 34 35.5 36.7 41.6	20.5 22.4 29.2 34.1 39.2 42.3 44.5 46.2 47.6 49.8 51.5 58.4	28.2 30.9 40.2 47.2 54.3 58.5 61.6 64 65.9 69 71.4 81.2	45.2 49.6 64.8 76.1 87.8 94.8 99.8 104 107 112 116 132	59.1 64.9 85 100 115 125 131 137 141 148 153 175	75.2 82.6 108 128 148 160 168 175 181 190 196 225	92.4 92.4 102 134 158 183 197 208 217 224 235 243 279	102 113 148 175 203 220 232 241 249 262 271 311	100 109 120 158 187 217 235 248 258 267 280 290 333	114 126 166 196 227 246 260 271 279 293 304 350
ARI Buisfull deaths (mm) = BPD3 6 for the noticel 1031	AEP 1.58 2 5 10 20 30 40 50 60 80 100 250 2050	10m 0.633 0.5 0.2 0.1 0.03 0.025 0.02 0.017 0.013 0.01 0.004	20m 1.1 1.2 1.7 2.2 2.8 3.2 3.6 3.8 4.1 4.5 4.9 6.7	30m 1.5 1.6 2.2 2.8 3.7 4.3 4.8 5.2 5.5 6.1 6.7 9.2	1h 1.5 1.7 2.5 3.3 4.3 5.1 5.7 6.2 6.7 7.4 8.1 11	2h 2.3 2.6 3.6 4.5 5.7 6.6 7.3 7.9 8.4 9.3 10 14	6h 3.1 3.4 4.7 6 7.7 8.9 9.9 11 12 13 14 19	12h 5.6 6.2 8.3 10 13 15 16 18 19 21 23 31	241 7.9 8.7 12 14 18 20 22 24 25 28 30 41	n 48h 13 15 20 24 29 32 34 36 37 40 42 52	1 72h 17 19 25 30 36 39 42 44 46 49 52 64	n 96h 19 21 28 34 40 44 47 49 51 55 58 71	120 20 23 30 43 47 51 53 56 60 63 78	h 211 24 32 38 45 53 55 58 62 65 80
Rainfail depths (mm) :: NLP2.6 for the period 2031	-2050 AEP 1.58 2 5 10 20 30 40 50 60 80 100 250 -2100	10m 0.633 0.5 0.2 0.1 0.05 0.033 0.025 0.02 0.017 0.013 0.01 0.004	20m 9.3 10.2 13.2 15.4 17.7 19 20 20.7 21.4 22.3 23.1 26.1	30m 13 14.2 18.5 21.6 24.8 26.8 28.1 29.2 30 31.4 32.5 36.8	1h 15.8 17.3 22.5 26.4 30.3 32.6 34.3 35.6 36.7 38.4 39.7 45	2h 21.9 24.1 31.4 36.8 42.3 45.6 48 49.8 51.3 53.8 55.6 63.1	6h 30 33 43.1 50.7 58.4 63 66.3 66.3 68.9 71 74.3 76.9 87.5	12h 47.7 52.5 68.8 81 93.5 101 106 111 114 120 124 141	244 61.9 68.2 89.6 106 122 132 139 145 149 157 162 185	48h 78.3 86.1 113 134 155 167 177 184 190 199 206 236	95.6 105 139 164 190 206 217 226 234 245 254 291	n 96h 106 116 154 211 228 241 251 259 272 282 324	120 112 124 164 194 225 244 257 268 277 290 301 346	h 117 129 171 203 235 255 269 280 289 304 315 362
ARI	AEP 1.58 2 5 10 20 30 40 50 60 80 100 250	10m 0.633 0.5 0.2 0.1 0.05 0.033 0.025 0.02 0.017 0.013 0.01 0.004	20m 9.3 10.2 13.2 15.4 17.7 19 20 20.7 21.4 22.3 23.1 26.1	30m 13 14.2 18.5 21.6 24.8 26.8 28.1 29.2 30 31.4 32.5 36.8	1h 15.8 17.3 22.5 26.4 30.3 32.6 34.3 35.6 36.7 38.4 39.7 45	2h 21.9 24.1 31.4 36.8 42.3 45.6 49.8 51.3 53.8 55.6 63.1	6h 30 33 43.1 50.7 58.4 63 66.3 66.3 71 74.3 76.9 87.5	12h 47.7 52.5 68.8 81 93.5 101 106 111 114 120 124 141	24h 61.9 68.2 89.6 106 122 132 139 145 149 157 162 185	1 481 78.3 86.1 113 134 155 167 177 184 190 199 206 236	95.6 105 139 164 190 206 217 226 234 245 254 291	n 96h 106 116 154 182 211 228 241 251 259 272 282 324	120 112 124 164 225 244 257 268 277 290 301 346	h 117 129 171 203 235 255 269 280 289 304 315 362
Rainfail depths (mm) :: RCP4.5 for the period 2031	-2050 AEP 1.58 2 5 10 20 30 40 50 60 80 100 250	10m 0.633 0.5 0.2 0.1 0.05 0.033 0.025 0.02 0.017 0.013 0.01 0.004	20m 9.45 10.4 13.4 15.7 18 19.4 20.4 21.1 21.8 22.8 23.5 26.6	30m 13.2 14.5 18.8 22 25.3 27.3 28.6 29.7 30.6 32 33.1 37.5	1h 16 17.6 22.9 26.8 33.2 34.9 36.3 37.4 39.1 40.4 45.8	2h 22.3 24.5 31.9 37.4 46.5 48.9 50.8 52.3 54.8 56.7 64.3	6h 30.5 33.6 43.9 51.5 59.4 64.1 67.4 70.1 72.2 75.7 78.3 89.1	12h 48.3 53.2 69.8 82.2 95 103 108 112 116 122 126 144	24ł 62.6 69 90.8 107 124 134 141 147 151 159 165 188	48h 79.1 87 115 135 157 169 179 186 192 201 209 239	96.4 96.4 140 166 192 208 220 229 236 248 257 294	n 96h 106 117 155 184 213 231 243 262 275 285 327	120 113 125 165 195 227 246 260 270 279 293 304 349	h 118 130 172 204 237 257 271 283 292 307 318 365
Rainfail depths (mm) .: RCP4.5 for the period 2081	-2100 AEP 1.58 2 5 10 20 30 40 50 60 80 100 250 -2050	10m 0.633 0.5 0.2 0.1 0.05 0.033 0.025 0.02 0.017 0.013 0.01 0.004	20m 9.94 10.9 14.2 16.6 19 20.5 21.5 22.4 23 24.1 24.9 28.1	30m 13.9 15.2 19.9 23.3 26.7 28.8 30.3 31.4 32.4 33.9 35 39.7	1h 16.9 18.5 24.2 28.3 32.6 35.1 36.9 38.4 39.5 41.4 42.8 48.5	2h 23.4 25.8 33.7 39.5 45.5 49.1 51.7 53.7 55.3 58 59.9 68	6h 32 35.3 46.2 54.3 62.7 67.6 71.2 74 76.3 79.9 82.7 94.1	12h 50.3 55.5 73 86.1 99.6 108 113 118 122 128 132 151	244 64.8 71.6 94.5 112 129 140 147 153 158 166 172 196	481 81.5 89.8 119 140 162 176 185 193 199 209 217 248	98.9 109 144 171 198 215 227 236 244 256 266 304	n 96h 109 120 160 189 219 238 251 261 270 283 294 337	120 115 128 169 201 233 253 267 278 287 302 313 359	h 120 133 177 209 243 264 279 290 300 315 327 375
ARI Rainfail deoths (mm) :- RCP6.0 for the period 2083	AEP 1.58 2 5 10 20 30 40 50 60 80 100 250 -2100	10m 0.633 0.5 0.2 0.1 0.05 0.033 0.025 0.02 0.017 0.013 0.01 0.004	20m 9.39 10.3 13.3 15.6 17.9 19.2 20.2 21 21.6 22.6 23.3 26.4	30m 13.1 14.4 18.7 25.1 27.1 28.4 29.5 30.4 31.8 32.9 37.2	1h 15.9 17.5 22.8 26.6 30.6 33 34.7 36 37.1 38.8 40.1 45.5	2h 22.1 24.3 31.7 37.2 42.8 46.1 48.5 50.4 51.9 54.4 56.2 63.8	6h 30.3 33.4 43.6 51.2 59 63.6 67 69.6 71.7 75.2 77.8 88.4	12h 48.1 52.9 69.4 81.7 94.4 102 107 112 115 121 125 143	24ł 62.3 68.7 90.3 106 123 133 140 146 151 158 164 187	78.8 78.8 86.7 114 135 156 169 178 185 191 200 208 238	96.1 96.1 106 140 165 191 207 219 228 235 247 256 293	n 96h 106 117 155 183 212 230 243 252 261 274 284 326	120 113 124 165 195 226 245 259 269 278 292 303 348	h 118 130 172 204 236 256 270 282 291 306 317 364
ARI Rainfail depths (mm) :: RCP8.5 for the period 2033	AEP 1.58 2 5 10 20 30 40 50 60 80 100 250 -2050	10m 0.633 0.5 0.2 0.1 0.05 0.033 0.025 0.02 0.017 0.013 0.01 0.004	20m 10.4 11.4 14.8 17.4 20 21.5 22.6 23.4 24.1 25.3 26.1 29.5	30m 14.5 15.9 20.8 24.4 28 30.2 31.7 33 34 35.6 36.8 41.6	1h 17.6 19.4 25.3 29.7 34.2 36.8 38.7 40.2 41.4 43.4 44.9 50.9	2h 24.5 26.9 35.2 41.4 47.7 51.5 54.2 56.3 58 60.8 62.9 71.4	6h 33.3 36.8 48.3 56.8 65.6 70.8 74.5 77.5 79.9 83.7 86.7 98.5	12h 52.1 57.5 75.9 89.5 104 112 118 123 127 133 138 157	24ł 66.8 73.9 97.8 115 134 145 153 159 164 172 178 204	 481 83.8 92.3 122 145 167 181 191 199 206 216 224 256 	101 101 112 148 176 204 221 233 243 251 264 273 313	n 96h 111 123 163 194 225 244 258 268 277 291 302 346	120 118 130 173 205 239 259 273 285 294 309 321 369	h 123 136 180 214 249 270 285 297 307 323 335 384
ARI	AEP 1.58 2 5 10 20 30 40 50 60 80 100 250 -2100	10m 0.633 0.5 0.2 0.1 0.05 0.033 0.025 0.02 0.017 0.013 0.01 0.004	20m 9.56 10.5 13.6 15.9 18.3 19.7 20.6 21.4 22 23.1 23.8 26.9	30m 13.4 14.7 19.1 22.3 25.6 27.6 29 30.1 31 32.5 33.6 38	1h 16.2 17.8 23.2 27.2 31.3 33.7 35.4 36.8 37.9 39.6 41 46.4	2h 22.6 24.8 32.3 37.9 43.7 47.1 49.5 51.5 53 55.5 57.4 65.2	6h 30.9 34 44.4 52.2 64.9 68.3 71 73.2 76.7 79.4 90.2	12h 48.8 53.7 70.6 83.1 96 104 109 114 117 123 127 145	244 63.1 69.6 91.7 108 125 135 143 143 148 153 160 166 190	48h 79.7 87.7 116 136 158 171 180 188 194 203 211 241	97 97 107 141 167 194 210 221 230 238 250 259 297	n 96h 107 118 156 185 214 232 245 255 264 277 287 329	120 114 125 166 197 228 248 261 272 281 295 306 352	h 119 131 173 205 238 259 273 284 294 309 320 368
ARI	AEP 1.58 2 5 10 20 30 40 50 60 80 100 250	10m 0.633 0.5 0.2 0.1 0.05 0.033 0.025 0.02 0.017 0.013 0.01 0.004	20m 11.4 12.5 16.3 19.2 22 23.7 24.9 25.9 26.7 27.9 28.9 32.6	30m 15.9 17.5 22.9 26.9 30.9 33.4 35.1 36.4 37.5 39.3 40.6 46	1h 19.3 21.2 27.8 32.7 37.7 40.7 42.8 44.5 45.8 48 49.6 56.2	2h 26.8 29.5 38.8 45.7 52.7 56.9 59.8 62.2 64.1 67.2 69.5 78.9	6h 36.3 40.2 53 62.5 72.2 78 82.1 85.4 88 92.3 95.5 109	12h 56.1 62.1 82.3 97.3 113 122 129 134 138 145 150 172	24ł 71.3 79.2 105 125 144 156 165 172 177 186 193 220	48h 88.8 98 130 154 179 194 205 213 220 231 240 275	106 118 157 186 216 235 248 258 266 280 291 333	n 96h 116 129 172 205 238 258 258 258 258 258 258 258 258 258 25	120 123 136 182 216 252 273 288 301 311 326 339 389	h 128 141 189 225 261 284 300 312 323 340 352 405

Product Specifications

Tank Specifications

FREEPHONE 0800 77 66 29 | SALES@PROMAXPLASTICS.CO.NZ | WWW.PROMAXPLASTICS.CO.NZ

Tank Specifications

Promax Enduro Water Tanks

Code	Description	D (mm)	H (mm)	Outlet (mm)	Manhole (mm)
PMXST00120	120L Header Tank	660mm	510mm	20mm	450mm
PMXST00450	450L Water Tank	880mm	820mm	20mm	450mm
PMXST01000	1000L Water Tank	1030mm	1420mm	20mm	450mm
PMXST02000	2000L Water Tank	1300mm	1735mm	25mm	450mm
PMXST03000	3000L Water Tank	1600mm	1760mm	25mm	450mm
PMXST04000	4000L Water Tank	1600mm	2200mm	32mm	450mm
PMXST05000	5000L Water Tank	1600mm	2650mm	32mm	450mm
PMXST05000LP	5000L Water Tank - Low Profile	2200mm	1850mm	50mm	450mm
PMXBT10000	10000L Water Tank - North Island Only	2200mm	2900mm	50mm	450mm
PMXBT25000	25000L Water Tank	3660mm	2800mm	2 x 50mm	600mm
PMXBT30000	30000L Water Tank	3660mm	3100mm	2 x 50mm	600mm

Promax Water Tank Colours

XPRESS Water Tanks

Code	Description	D (mm)	H (mm)	Outlet (mm)	Manhole (mm)
XPST02500	2500L Water Tank	1850mm	1240mm	25mm	450mm
XPST03500	3500L Water Tank	1850mm	1640mm	25mm	450mm
XPST05000	5000L Water Tank	1850mm	2240mm	32mm	450mm
XPBT10000	10000L Water Tank - South Island Only	2200mm	3100mm	50mm	450mm
XPBT15000	15000L Water Tank	3000mm	2650mm	50mm	600mm
XPBT25000	25000L Water Tank	3660mm	2800mm	50mm	600mm
XPBT30000	30000L Water Tank	3660mm	3100mm	50mm	600mm

XPRESS Water Tank Colours

Please Note: Tank Colours are displayed as close as printing methods will allow.

Please Note: All XPRESS tanks have smooth walls.

XPRESS Stackable Water Tanks

Code	Description	D (mm)	H (mm)	Outlet (mm)	Manhole (mm)
XPST00600	600L Stackable Water Tank	1000mm	700mm	20mm	-
XPST05760ST	5760L Stackable Water Tank	2300mm	2040mm	25mm	450mm

Please Note: Available in Mist Green Only.

Slimline Tanks

Code	Description	D (mm)	H (mm)	Outlet (mm)	Manhole (mm)
PMXSL02000SL	2000L Slimline Tank	2250mm x 570mm	2150mm	25mm	300mm
PMXSL03000SL	3000L Slimline Tank	3000mm x 570mm	2150mm	25mm	300mm
PMXSL05000SL	5000L Slimline Tank	3000mm x 910mm	2150mm	32mm	300mm

Technical Drawings available on request.

* Please note ALL XPRESS tanks have smooth walls. + Material complies with the following standards: AS/NZS 4020: 2002 Potable (Drinking) Water Standard AS/NZS 2070: Part 1 and Part 8 Australian Standards for Food Contact AS/NZS 4766 (INT): 2002 Polyethylene Storage Tanks for Water and Chemicals

APPENDIX D

Assessment Criteria